Menu Close

a-1-0-a-n-27-a-n-1-n-1-k-1-m-a-k-




Question Number 2575 by prakash jain last updated on 22/Nov/15
a_1 =0  a_n =27×a_(n−1) +(n−1)  Σ_(k=1) ^m a_k =?
a1=0an=27×an1+(n1)mk=1ak=?
Commented by prakash jain last updated on 22/Nov/15
a_1 =0  a_2 =1  a_3 =27+2  a_4 =27^2 +2.27+3  a_5 =27^3 +2.27^2 +3∙27+4
a1=0a2=1a3=27+2a4=272+2.27+3a5=273+2.272+327+4
Commented by Yozzi last updated on 22/Nov/15
Generating function is a possible  approach to finding a_n  I think.
GeneratingfunctionisapossibleapproachtofindinganIthink.
Commented by prakash jain last updated on 22/Nov/15
This sum is based on Q2545. a_n  being  the quotient when 3^(3n) −26n−1 is divided  by 676.  a_n  should evaluate to ((3^(3n) −26n−1)/(676))
ThissumisbasedonQ2545.anbeingthequotientwhen33n26n1isdividedby676.anshouldevaluateto33n26n1676
Commented by Rasheed Soomro last updated on 23/Nov/15
What a deep observer  you  are !!!
Whatadeepobserveryouare!!!
Answered by RasheedAhmad last updated on 23/Nov/15
Let S=Σ_(k=1) ^m a_k   S=s_1 +s_2 +s_3 +...+s_m   1+2+ ...+n=((n(n+1))/2) [Formula for s_i ]  where  s_1 =1+2+...(m−1) terms=((m(m−1))/2)  s_2 =27(1+2+....(m−2) terms=(((m−2)(m−1))/2)  s_3 =27^2 (1+2+...(m−3)terms                                 = (((m−3)(m−2))/2)  ....  s_m =27^(m−1) (1+2+...0 terms=0  ...  Continue
LetS=mk=1akS=s1+s2+s3++sm1+2++n=n(n+1)2[Formulaforsi]wheres1=1+2+(m1)terms=m(m1)2s2=27(1+2+.(m2)terms=(m2)(m1)2s3=272(1+2+(m3)terms=(m3)(m2)2.sm=27m1(1+2+0terms=0Continue
Commented by Filup last updated on 23/Nov/15
I believe if I have evaluated correctly:  S=Σ_(k=1) ^n (27^(k−1) (Σ_(h=1) ^(m−k) h))  S=Σ_(k=1) ^n Σ_(h=1) ^(m−k) 27^(k−1) h  S=Σ_(k=1) ^n (27^(k−1) ((1/2)(m−k)(1+m−k)))    s_1 =1+2+...+(m−1)  s_2 =27(1+2+...+(m−2))  s_3 =27^2 (1+2+...+(m−3))  ⋮  s_n =27^(n−1) (1+2+...+(m−n))  ∴Σ_(i=1) ^n s_i =(1/2)Σ_(k=1) ^n (27^(k−1) (m−k)(m−k+1))  continue
IbelieveifIhaveevaluatedcorrectly:S=nk=1(27k1(mkh=1h))S=nk=1mkh=127k1hS=nk=1(27k1(12(mk)(1+mk)))s1=1+2++(m1)s2=27(1+2++(m2))s3=272(1+2++(m3))sn=27n1(1+2++(mn))ni=1si=12nk=1(27k1(mk)(mk+1))continue
Answered by prakash jain last updated on 23/Nov/15
a_n =27^(n−2) +2∙27^(n−3) +...+(n−2)∙27+(n−1)  t_n =27^(n−2) +2∙27^(n−3) +3∙27^(n−2) +...+(n−2)∙27  (t_n /(27))=            27^(n−3)        +2∙27^(n−2) +...+(n−3)∙27+(n−2)  t_n −(t_n /(27))=27^(n−2) +27^(n−3) +....+27−(n−2)  RHS black color is GP  ((26t_n )/(27))=((27(27^(n−2) −1))/(26))−n+2  ((26)/(27))t_n =((27^(n−1) −27−26n+2∙26)/(26))  t_n =((27^n −27∙27−26∙27n+2∙26∙27)/(26∙26))  a_n =((27^n −27∙27−26∙27n+2∙26∙27)/(26∙26))+n−1  a_n =((3^(3n) −26∙27n+26∙26n−27+2∙26∙27−26∙26)/(676))  a_n =((3^(3n) −26n−27.27+26∙27+26.27−26∙26)/(676))  a_n =((3^(3n) −26n−27(27−26)+26(27−26))/(676))  a_n =((3^(3n) −26n−1)/(676))  Σ_(i=1) ^m a_i =(1/(676))[Σ_(i=1) ^m 3^(3i) −26Σ_(i=1) ^m i−Σ_(i=1) ^m 1]  The last sum is direct formula.
an=27n2+227n3++(n2)27+(n1)tn=27n2+227n3+327n2++(n2)27tn27=27n3+227n2++(n3)27+(n2)tntn27=27n2+27n3+.+27(n2)RHSblackcolorisGP26tn27=27(27n21)26n+22627tn=27n12726n+22626tn=27n27272627n+226272626an=27n27272627n+226272626+n1an=33n2627n+2626n27+226272626676an=33n26n27.27+2627+26.272626676an=33n26n27(2726)+26(2726)676an=33n26n1676mi=1ai=1676[mi=133i26mi=1imi=11]Thelastsumisdirectformula.

Leave a Reply

Your email address will not be published. Required fields are marked *