Question Number 2575 by prakash jain last updated on 22/Nov/15

Commented by prakash jain last updated on 22/Nov/15

Commented by Yozzi last updated on 22/Nov/15

Commented by prakash jain last updated on 22/Nov/15

Commented by Rasheed Soomro last updated on 23/Nov/15

Answered by RasheedAhmad last updated on 23/Nov/15
![Let S=Σ_(k=1) ^m a_k S=s_1 +s_2 +s_3 +...+s_m 1+2+ ...+n=((n(n+1))/2) [Formula for s_i ] where s_1 =1+2+...(m−1) terms=((m(m−1))/2) s_2 =27(1+2+....(m−2) terms=(((m−2)(m−1))/2) s_3 =27^2 (1+2+...(m−3)terms = (((m−3)(m−2))/2) .... s_m =27^(m−1) (1+2+...0 terms=0 ... Continue](https://www.tinkutara.com/question/Q2580.png)
Commented by Filup last updated on 23/Nov/15

Answered by prakash jain last updated on 23/Nov/15
![a_n =27^(n−2) +2∙27^(n−3) +...+(n−2)∙27+(n−1) t_n =27^(n−2) +2∙27^(n−3) +3∙27^(n−2) +...+(n−2)∙27 (t_n /(27))= 27^(n−3) +2∙27^(n−2) +...+(n−3)∙27+(n−2) t_n −(t_n /(27))=27^(n−2) +27^(n−3) +....+27−(n−2) RHS black color is GP ((26t_n )/(27))=((27(27^(n−2) −1))/(26))−n+2 ((26)/(27))t_n =((27^(n−1) −27−26n+2∙26)/(26)) t_n =((27^n −27∙27−26∙27n+2∙26∙27)/(26∙26)) a_n =((27^n −27∙27−26∙27n+2∙26∙27)/(26∙26))+n−1 a_n =((3^(3n) −26∙27n+26∙26n−27+2∙26∙27−26∙26)/(676)) a_n =((3^(3n) −26n−27.27+26∙27+26.27−26∙26)/(676)) a_n =((3^(3n) −26n−27(27−26)+26(27−26))/(676)) a_n =((3^(3n) −26n−1)/(676)) Σ_(i=1) ^m a_i =(1/(676))[Σ_(i=1) ^m 3^(3i) −26Σ_(i=1) ^m i−Σ_(i=1) ^m 1] The last sum is direct formula.](https://www.tinkutara.com/question/Q2598.png)