Question Number 1997 by prakash jain last updated on 29/Oct/15
$${A}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…. \\ $$$${B}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…. \\ $$$${A}−{B}=? \\ $$
Commented by Rasheed Soomro last updated on 30/Oct/15
$${If}\:'…'\:\:\:{represents}\:'{non}−{ending}'\:\: \\ $$$${A}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…. \\ $$$$\:\:\:\:\:\:\:\:\updownarrow\:\:\:\:\:\updownarrow\:\:\:\:\:\:\:\updownarrow\:\:\:\:\:…\: \\ $$$${B}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…. \\ $$$${A}−{B}=\left(\mathrm{1}−\mathrm{1}\right)+\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\left(\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\right)+…+\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}}\right)+… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}+\mathrm{0}+\mathrm{0}+… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}.\infty \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:={Indeterminate} \\ $$
Answered by Yozzi last updated on 29/Oct/15
$${A}\:{and}\:{B}\:{both}\:{represent}\:{infinite} \\ $$$${harmonic}\:{series}.\:{Both}\:{series}\:{are}\:{then} \\ $$$${divergent}\:{and}\:{A}−{B}\:{is}\:{undefined}.\: \\ $$
Commented by Filup last updated on 29/Oct/15
$$\mathrm{Can}'\mathrm{t}\:\mathrm{you}\:\mathrm{say}: \\ $$$${A}={B}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+… \\ $$$$\mathrm{Let}\:\mathrm{S}={A}={B} \\ $$$$\therefore{A}−{B}={S}−{S}=\mathrm{0}? \\ $$
Commented by Filup last updated on 29/Oct/15
$$\mathrm{Similar}\:\mathrm{to}: \\ $$$${S}=\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+… \\ $$$${S}_{\mathrm{1}} =\left(\mathrm{1}−\mathrm{1}\right)+\left(\mathrm{1}−\mathrm{1}\right)+…=\mathrm{0} \\ $$$${S}_{\mathrm{2}} =\mathrm{1}−\left(\mathrm{1}−\mathrm{1}\right)−\left(\mathrm{1}−\mathrm{1}\right)−…=\mathrm{1} \\ $$$${S}_{\mathrm{3}} =\mathrm{0}.\mathrm{5} \\ $$$$\because\mathrm{1}−{S}=\mathrm{1}−\left(\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+…\right) \\ $$$$\therefore\mathrm{1}−{S}={S} \\ $$$$\mathrm{2}{S}=\mathrm{1} \\ $$$$ \\ $$$${S}=\mathrm{0},\:\mathrm{0}.\mathrm{5},\:\mathrm{1} \\ $$$$ \\ $$$${S}\mathrm{imilar}\:\mathrm{to}: \\ $$$${A}={B}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+… \\ $$$$\left(\mathrm{1}\right)\:{A}−{B}=\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…\right)−\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…\right) \\ $$$${A}−{B}=\left(\mathrm{1}−\mathrm{1}\right)+\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\left(\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\right)+… \\ $$$$\therefore{A}−{B}=\mathrm{0} \\ $$$$ \\ $$$${or} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:{S}={A}={B}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+… \\ $$$$\therefore{A}−{B}={S}−{S}=\mathrm{0} \\ $$$$ \\ $$$$\therefore{A}−{B}=\mathrm{0} \\ $$
Commented by Yozzi last updated on 29/Oct/15
$${How}\:{are}\:{we}\:{so}\:{certain}\:{that}\:{the}\:{series} \\ $$$${of}\:{each}\:{A}\:{and}\:{B}\:{have}\:{the}\:{same}\:{number} \\ $$$${of}\:{terms}\:{as}\:{n}\rightarrow\infty? \\ $$$${Each}\:{series}\:{is}\:{of}\:{the}\:{form} \\ $$$$\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}}.\:{Thus},\:{it}\:{is}\:{possible}\:{as}\:{you}\:{rightly} \\ $$$${said}\:{that}\:{A}\:{could}\:{equal}\:{B}\:{be}\:{at}\:{an} \\ $$$${arbitrarily}\:{large}\:{value}\:{of}\:{n}.\: \\ $$$$\therefore\:{one}\:{possibility}\:{is}\:\exists{N}\in\mathbb{N}\:{such}\:{that} \\ $$$${the}\:{partial}\:{sum}\:\underset{{r}=\mathrm{1}} {\overset{{N}} {\sum}}\frac{\mathrm{1}}{{n}}\:{is}\:{both}\:{equal} \\ $$$${to}\:{A}\:{and}\:{B}\Rightarrow{A}−{B}=\mathrm{0}. \\ $$$${However},\:{what}\:{if}\:{the}\:{series}\:{each}\: \\ $$$${differ}\:{by}\:{at}\:{least}\:{one}\:{term}\:{so}\:{we}\:{have} \\ $$$${N}\neq{M}\:\left({N}>{M}>\mathrm{3}\right){where}\:{A}=\underset{{r}=\mathrm{1}} {\overset{{N}} {\sum}}\frac{\mathrm{1}}{{r}}\: \\ $$$${and}\:{B}=\underset{{r}=\mathrm{1}} {\overset{{M}} {\sum}}\frac{\mathrm{1}}{{r}}.\:{In}\:{this}\:{case}\:{we}\:{may}\:{have}\:{for}\:{example} \\ $$$${A}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}+…+\frac{\mathrm{1}}{\mathrm{1234567890}}+\frac{\mathrm{1}}{\mathrm{1234567891}}+\frac{\mathrm{1}}{\mathrm{1234567892}} \\ $$$${A}=\underset{{r}=\mathrm{1}} {\overset{\mathrm{1234567892}} {\sum}}\frac{\mathrm{1}}{{r}} \\ $$$${and}\:{B}=\underset{{r}=\mathrm{1}} {\overset{\mathrm{1234567891}} {\sum}}\Rightarrow{A}\neq{B}\Rightarrow{A}−{B}\neq\mathrm{0}. \\ $$$${I}\:{say}\:{A}−{B}\:{is}\:{undefined}\:{because}\: \\ $$$${n}=\infty\:{represents}\:{an}\:{arbitrarily}\:{large}\: \\ $$$${number}\:{of}\:{terms}\:{so}\:{that}\:{one}\:{doesn}'{t} \\ $$$${know}\:{for}\:{sure}\:{that}\:{A}={B}\:{though} \\ $$$${A}\:{and}\:{B}\:{have}\:{identical}\:{notational} \\ $$$${representations}. \\ $$
Commented by Filup last updated on 29/Oct/15
$$\mathrm{I}\:\mathrm{agree}\:\mathrm{with}\:\mathrm{the}\:\mathrm{above}.\:\mathrm{However},\:\mathrm{due}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{similariy}\:\mathrm{of}\:\mathrm{a}\:\mathrm{pattern}\:\mathrm{and}\:\mathrm{the}\:\mathrm{open} \\ $$$$\mathrm{possible}\:\mathrm{expectation}\:\mathrm{that}\:\mathrm{both}\:\mathrm{patterns}\:\mathrm{continue} \\ $$$$\mathrm{either}\:\mathrm{the}\:\mathrm{same}\:\mathrm{or}\:\mathrm{similarl}\:\mathrm{magnitude},\:\mathrm{I}\:\mathrm{would}\:\mathrm{argue} \\ $$$$\mathrm{that}\:\mathrm{both}\:\mathrm{statements}\:\mathrm{are}\:\mathrm{correct}\:\mathrm{such}\:\mathrm{that}: \\ $$$$ \\ $$$${For}: \\ $$$${A}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+… \\ $$$${A}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{i}}={H}_{{n}} \\ $$$$ \\ $$$${B}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+… \\ $$$${B}=\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}\frac{\mathrm{1}}{{i}}={H}_{{m}} \\ $$$$ \\ $$$${A}−{B}=\begin{cases}{\mathrm{0},\:\:{n}={m}}\\{\mathrm{undefined},\:\:{n}\neq{m}}\end{cases} \\ $$$$ \\ $$
Commented by Yozzi last updated on 29/Oct/15
$${Correct}. \\ $$
Commented by Rasheed Soomro last updated on 29/Oct/15
$${On}\:{the}\:{comment}\:{of}\:{Yozi} \\ $$$${You}\:{have}\:{objected}\:{about}\:{to}\:{be}\:{both}\:{series}\: \\ $$$${of}\:{same}\:{number}\:{of}\:{terms}.{I}\:{agree}\:{that}\:{one}\:{infinity}\:{may}\:{not} \\ $$$${be}\:{equal}\:{to}\:{other}\:{infinity}\:{however}\:{in}\:{this}\:{case}\:{I}\:{think}\:{both} \\ $$$${infinities}\:{are}\:{the}\:{same}\:{as}\:{of}\:{the}\:{infinity}\:{of}\:\mathbb{N}\:{because} \\ $$$${they}\:{are}\:{concerned}\:{with}\:{counting}.\:\left({Or}\:{all}\:{infinities}\right. \\ $$$$\left.{are}\:{concerned}\:{with}\:{counting}???\right)\:{This}\:{can}\:{be}\:{said}\:{in}\:{better} \\ $$$${way}\:{that}\:{terms}\:{of}\:{any}\:{of}\:{the}\:{series}\:{can}\:{be}\:{matched}\:{with} \\ $$$${elements}\:{of}\:\mathbb{N}. \\ $$$${Coudn}'{t}\:{we}\:{say}\:{that}\:{we}\:{are}\:{certain}\:{that}\:{both}\:{series}\:{have} \\ $$$${no}\:{end}?\:{when}\:{we}\:{consider}\:{that}\:{both}\:{series}\:{may}\:{have}\: \\ $$$${different}\:{number}\:{of}\:{terms}\:{we}\:{are}\:{really}\:{talking}\:{in}\:\underset{−} {{finite}\:{sense}}. \\ $$
Commented by Yozzi last updated on 29/Oct/15
$${You}'{re}\:{correct},\:{but}\:{then}\:{again}\:{if}\:{we}\: \\ $$$${say}\:{A}={B}\:\:{can}\:{you}\:{prove}\:{to}\:{me}\:{that} \\ $$$${regardless}\:{of}\:{how}\:{large}\:{the}\:{terms} \\ $$$${of}\:{each}\:{of}\:{the}\:{series}\:{gets},\:{A}\:{always} \\ $$$${equals}\:{B}?\:{The}\:{notation}\:{only}\:{suggests} \\ $$$${how}\:{each}\:{series}\:{is}\:{generated}.\:{The} \\ $$$${notation}\:{does}\:{not}\:{explicitly}\:{indicate} \\ $$$${whether}\:{or}\:{not}\:{the}\:{two}\:{series}\:{converge} \\ $$$${to}\:{each}\:{other}.\:{But},\:{there}'{s}\:{a}\:{chance}\:{that} \\ $$$${I}\:{am}\:{misinterpretating}\left({probably}\right)\:{how}\:{the}\:{idea} \\ $$$${of}\:{infinity}\:{plays}\:{out}\:{in}\:{deciding}\:{if} \\ $$$${A}={B}.\:{My}\:{understanding}\:{of}\:{proving} \\ $$$${A}={B}\:{is}\:{to}\:{show}\:{that}\:{the}\:{infinity}\:{concerned} \\ $$$${with}\:{A}\:{equals}\:{that}\:{concerned}\:{with}\:{B}. \\ $$$$ \\ $$
Commented by Rasheed Soomro last updated on 30/Oct/15
$${Pl}\:{see}\:{my}\:{comment}\:{following}\:{the}\:{Question}. \\ $$$${I}\:{have}\:{supported}\:{you}\:{even}\:{in}\:{case}\:{both}\:{infinities} \\ $$$${regardind}\:{A}\:{and}\:{B}\:{are}\:{same}\:{as}\:{of}\:\mathbb{N}. \\ $$
Commented by 123456 last updated on 31/Oct/15
$$\mathrm{also}\:\mathrm{if}\:\mathrm{a}\:\mathrm{series}\:\mathrm{is}\:\mathrm{conditionaly}\:\mathrm{convergence} \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{change}\:\mathrm{it}\:\mathrm{value}\:\mathrm{by}\:\mathrm{reorganizing}\:\mathrm{it} \\ $$$$\mathrm{a}\:\mathrm{serie}\:\mathrm{is}\:\mathrm{conditionaly}\:\mathrm{convergence}\:\mathrm{if} \\ $$$$\Sigma{a}_{{n}} \:\mathrm{converge}\:\mathrm{but}\:\Sigma\mid{a}_{{n}} \mid\:\mathrm{not} \\ $$$$\mathrm{if}\:\Sigma\mid{a}_{{n}} \mid\:\mathrm{converge}\:\mathrm{the}\:\mathrm{covergence}\:\mathrm{are}\:\mathrm{called}\:\mathrm{absolute}\:\mathrm{covergenceu} \\ $$
Answered by Rasheed Soomro last updated on 01/Nov/15
$$ \\ $$$${A}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…. \\ $$$$\:\:\:\:\:\:\:\:\updownarrow\:\:\:\:\:\updownarrow\:\:\:\:\:\:\:\updownarrow\:\:\:\:\:…. \\ $$$${B}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…. \\ $$$${A}−{B}=\left(\mathrm{1}−\mathrm{1}\right)+\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\right)+…\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}}\right)+… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}+\mathrm{0}+\mathrm{0}+… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}.\infty \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:={indeterminate}\: \\ $$