Question Number 11035 by suci last updated on 08/Mar/17
![A= [(1,(−1)),((−4),(−2)) ] A^(2016) =.....?](https://www.tinkutara.com/question/Q11035.png)
$${A}=\begin{bmatrix}{\mathrm{1}}&{−\mathrm{1}}\\{−\mathrm{4}}&{−\mathrm{2}}\end{bmatrix} \\ $$$${A}^{\mathrm{2016}} =…..? \\ $$
Answered by diofanto last updated on 19/Jul/17
![Finding the eigenvalues of A: determinant (((1−λ),(−1)),((−4),(−2−λ))) = 0 (1−λ)(−2−λ) − 4 = 0 λ^2 + λ − 6 = 0 λ_1 = 2, λ_2 = −3 Finding an eigenvector for each eigenvalue: Ax = λ_1 x ⇔ (A−λ_1 I)x = 0 ⇔ [((−1),(−1)),((−4),(−4)) ] [(x_1 ),(x_2 ) ] = [(0),(0) ] ⇔ x_1 = −x_2 , e.g. [((−1)),(1) ] Ay = λ_2 y ⇔ (A−λ_2 I)y = 0 ⇔ [(4,(−1)),((−4),1) ] [(y_1 ),(y_2 ) ] = [(0),(0) ] ⇔ y_1 = y_2 /4, e.g. [(1),(4) ] Diagonalizing: A = [((−1),1),(1,4) ] [(2,0),(0,(−3)) ] [((−1),1),(1,4) ]^(−1) Finding [((−1),1),(1,4) ]^(−1) : (((−1),1,1,0),(1,4,0,1) ) ∼ (((−1),1,1,0),(0,5,1,1) ) ∼ (((−1),0,(4/5),(−1/5)),(0,5,1,1) ) ∼ ((1,0,(−4/5),(1/5)),(0,1,(1/5),(1/5)) ) ⇔ [((−1),1),(1,4) ]^(−1) = [((−4/5),(1/5)),((1/5),(1/5)) ] A^(2016) = [((−1),1),(1,4) ] [(2^(2016) ,0),(0,((−3)^(2016) )) ] [((−4/5),(1/5)),((1/5),(1/5)) ] …](https://www.tinkutara.com/question/Q18360.png)
$$\mathrm{Finding}\:\mathrm{the}\:\mathrm{eigenvalues}\:\mathrm{of}\:{A}: \\ $$$$\begin{vmatrix}{\mathrm{1}−\lambda}&{−\mathrm{1}}\\{−\mathrm{4}}&{−\mathrm{2}−\lambda}\end{vmatrix}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{1}−\lambda\right)\left(−\mathrm{2}−\lambda\right)\:−\:\mathrm{4}\:=\:\mathrm{0} \\ $$$$\lambda^{\mathrm{2}} \:+\:\lambda\:−\:\mathrm{6}\:=\:\mathrm{0} \\ $$$$\lambda_{\mathrm{1}} \:=\:\mathrm{2},\:\lambda_{\mathrm{2}} \:=\:−\mathrm{3} \\ $$$$\mathrm{Finding}\:\mathrm{an}\:\mathrm{eigenvector}\:\mathrm{for}\:\mathrm{each}\:\mathrm{eigenvalue}: \\ $$$${Ax}\:=\:\lambda_{\mathrm{1}} {x}\:\Leftrightarrow\:\left({A}−\lambda_{\mathrm{1}} {I}\right){x}\:=\:\mathrm{0} \\ $$$$\Leftrightarrow\:\begin{bmatrix}{−\mathrm{1}}&{−\mathrm{1}}\\{−\mathrm{4}}&{−\mathrm{4}}\end{bmatrix}\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\end{bmatrix}\:=\:\begin{bmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{bmatrix}\: \\ $$$$\Leftrightarrow\:{x}_{\mathrm{1}} \:=\:−{x}_{\mathrm{2}} ,\:\mathrm{e}.\mathrm{g}.\:\begin{bmatrix}{−\mathrm{1}}\\{\mathrm{1}}\end{bmatrix} \\ $$$${Ay}\:=\:\lambda_{\mathrm{2}} {y}\:\Leftrightarrow\:\left({A}−\lambda_{\mathrm{2}} {I}\right){y}\:=\:\mathrm{0} \\ $$$$\Leftrightarrow\:\begin{bmatrix}{\mathrm{4}}&{−\mathrm{1}}\\{−\mathrm{4}}&{\mathrm{1}}\end{bmatrix}\begin{bmatrix}{{y}_{\mathrm{1}} }\\{{y}_{\mathrm{2}} }\end{bmatrix}\:=\:\begin{bmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{bmatrix}\: \\ $$$$\Leftrightarrow\:{y}_{\mathrm{1}} \:=\:{y}_{\mathrm{2}} /\mathrm{4},\:\mathrm{e}.\mathrm{g}.\:\begin{bmatrix}{\mathrm{1}}\\{\mathrm{4}}\end{bmatrix} \\ $$$$\mathrm{Diagonalizing}: \\ $$$${A}\:=\:\begin{bmatrix}{−\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{4}}\end{bmatrix}\begin{bmatrix}{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{0}}&{−\mathrm{3}}\end{bmatrix}\begin{bmatrix}{−\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{4}}\end{bmatrix}^{−\mathrm{1}} \\ $$$$\mathrm{Finding}\:\begin{bmatrix}{−\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{4}}\end{bmatrix}^{−\mathrm{1}} : \\ $$$$\begin{pmatrix}{−\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{4}}&{\mathrm{0}}&{\mathrm{1}}\end{pmatrix}\:\sim\:\begin{pmatrix}{−\mathrm{1}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{5}}&{\mathrm{1}}&{\mathrm{1}}\end{pmatrix} \\ $$$$\sim\:\begin{pmatrix}{−\mathrm{1}}&{\mathrm{0}}&{\mathrm{4}/\mathrm{5}}&{−\mathrm{1}/\mathrm{5}}\\{\mathrm{0}}&{\mathrm{5}}&{\mathrm{1}}&{\mathrm{1}}\end{pmatrix}\:\sim\:\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}&{−\mathrm{4}/\mathrm{5}}&{\mathrm{1}/\mathrm{5}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{1}/\mathrm{5}}&{\mathrm{1}/\mathrm{5}}\end{pmatrix} \\ $$$$\Leftrightarrow\:\begin{bmatrix}{−\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{4}}\end{bmatrix}^{−\mathrm{1}} \:=\:\begin{bmatrix}{−\mathrm{4}/\mathrm{5}}&{\mathrm{1}/\mathrm{5}}\\{\mathrm{1}/\mathrm{5}}&{\mathrm{1}/\mathrm{5}}\end{bmatrix} \\ $$$${A}^{\mathrm{2016}} \:=\:\begin{bmatrix}{−\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{4}}\end{bmatrix}\begin{bmatrix}{\mathrm{2}^{\mathrm{2016}} }&{\mathrm{0}}\\{\mathrm{0}}&{\left(−\mathrm{3}\right)^{\mathrm{2016}} }\end{bmatrix}\begin{bmatrix}{−\mathrm{4}/\mathrm{5}}&{\mathrm{1}/\mathrm{5}}\\{\mathrm{1}/\mathrm{5}}&{\mathrm{1}/\mathrm{5}}\end{bmatrix} \\ $$$$\ldots \\ $$