Menu Close

A-1-2-2-5-B-3-1-4-2-determine-A-B-




Question Number 2564 by Rasheed Soomro last updated on 22/Nov/15
A= [(1,2),(2,5) ],B= [(3,(−1)),(4,(+2)) ]  determine A^B
A=[1225],B=[314+2]determineAB
Answered by Yozzi last updated on 22/Nov/15
∣A∣=5−4=1≠0 ⇒A is non−singular.  A^B =e^((lnA)B) =Σ_(k=0) ^∞ (1/(k!)){(lnA)B}^k   For eigenvalues k of A  ∣A−kI∣=0  ∴ determinant (((1−k   2)),((2    5−k)))=0  (1−k)(5−k)−4=0  5−6k+k^2 −4=0  k^2 −6k+1=0  (k−3)^2 −9+1=0  (k−3)^2 =8⇒k=3±2(√2)  For k=3+2(√2),    (∵ Ae=ke⇒(A−kI)e=0)   [((1−3−2(√2)          2)),((2                   5−3−2(√2))) ] [(x),(y) ]= [(0),(0) ]  (−2−2(√2))x+2y=0⇒y=(1+(√2))x.....(i)    2x+(2−2(√2))y=0  x+(1−(√2))y=0......(ii)  y from (i) leads to  x+(1−(√2))(1+(√2))x=0  x+(1−2)x=0  x−x=0 (true)  ∴ We can choose eigenvector e_1 = [(1),((1+(√2))) ]   for k=3+2(√2)    For k=3−2(√2)   [((−2+2(√2)      2)),((2                 2+2(√2))) ] [(x),(y) ]= [(0),(0) ]  ⇒(−1+(√2))x+y=0⇒y=(1−(√2))x ..............(iii)  and 2x+(2+2(√2))y=0⇒x+(1+(√2))y=0........(iv)  y from (iii) into (iv) gives  x+(1−2)x=0⇒x−x=0 (true)  So let e_2 = [(1),((1−(√2))) ] for k=3−2(√2).  ∴ Let V=[e_1    e_2 ]= [((1              1)),((1+(√2)    1−(√2))) ]  and A^′ = [((3+2(√2)     0)),((0     3−2(√2))) ]⇒lnA^′ = [((ln(3+2(√2))    0)),((0                       ln(3−2(√2)))) ]  V^(−1) =(1/(∣V∣))adj(V)  adj(V)= [((1−(√2)     −1)),((−1−(√2)     1)) ]  ∣V∣=1−(√2)−1−(√2)=−2(√2)  V^(−1) =((−1)/(2(√2))) [((1−(√2)   −1)),((−1−(√2)    1)) ]  ∴  lnA=V(lnA^′ )V^(−1)   lnA=((−1)/(2(√2))) [((1              1)),((1+(√2)     1−(√2))) ] [((ln(3+2(√2))   0)),((0    ln(3−2(√2)))) ] [((1−(√2)    −1)),((−1−(√2)     1)) ]  lnA=((−1)/(2(√2))) [((ln(3+2(√2))                   ln(3−2(√2)))),(((1+(√2))ln(3+2(√2))   (1−(√2))ln(3−2(√2)))) ] [((1−(√2)         −1)),((−1−(√2)        1)) ]  lnA=((−1)/(2(√2))) [(((1−(√2))ln(3+2(√2))−(1+(√2))ln(3−2(√2))                      ln(((3−2(√2))/(3+2(√2))))           )),((                         ln(((3−2(√2))/(3+2(√2))))                                 (1−(√2))ln(3−2(√2))−(1+(√2))ln(3+2(√2)))) ]  ∴(lnA)B=((−1)/(2(√2))) [(((1−(√2))ln(3+2(√2))−(1+(√2))ln(3−2(√2))                           ln(((3−2(√2))/(3+2(√2)))))),((                          ln(((3−2(√2))/(3+2(√2))))                              (1−(√2))ln(3−2(√2))−(1+(√2))ln(3+2(√2)))) ]×B
A∣=54=10Aisnonsingular.AB=e(lnA)B=k=01k!{(lnA)B}kForeigenvalueskofAAkI∣=0|1k225k|=0(1k)(5k)4=056k+k24=0k26k+1=0(k3)29+1=0(k3)2=8k=3±22Fork=3+22,(Ae=ke(AkI)e=0)[1322225322][xy]=[00](222)x+2y=0y=(1+2)x..(i)2x+(222)y=0x+(12)y=0(ii)yfrom(i)leadstox+(12)(1+2)x=0x+(12)x=0xx=0(true)Wecanchooseeigenvectore1=[11+2]fork=3+22Fork=322[2+22222+22][xy]=[00](1+2)x+y=0y=(12)x..(iii)and2x+(2+22)y=0x+(1+2)y=0..(iv)yfrom(iii)into(iv)givesx+(12)x=0xx=0(true)Solete2=[112]fork=322.LetV=[e1e2]=[111+212]andA=[3+2200322]lnA=[ln(3+22)00ln(322)]V1=1Vadj(V)adj(V)=[121121]V∣=1212=22V1=122[121121]lnA=V(lnA)V1lnA=122[111+212][ln(3+22)00ln(322)][121121]lnA=122[ln(3+22)ln(322)(1+2)ln(3+22)(12)ln(322)][121121]lnA=122[(12)ln(3+22)(1+2)ln(322)ln(3223+22)ln(3223+22)(12)ln(322)(1+2)ln(3+22)](lnA)B=122[(12)ln(3+22)(1+2)ln(322)ln(3223+22)ln(3223+22)(12)ln(322)(1+2)ln(3+22)]×B
Commented by RasheedAhmad last updated on 22/Nov/15
I′ve learnt something from you  that I didn′t know   before!
IvelearntsomethingfromyouthatIdidntknowbefore!
Commented by Yozzi last updated on 22/Nov/15
Honestly, I hadn′t known how to find  A^(B )  until today. Sometime ago  I looked at Wikipedia to obtain information  on solving a matrix differential  equation of the form (dr/dt)+Ar=o   where it was suggested that a   suitable matrix integrating factor  be employed. In (incorrectly) guessing that the  required factor is of the form e^A   I was met with a cool idea concerning  the expression e^(X )  for X being a matrix  and e being Euler′s constant. So  when I saw your question on A^B  I thought  about the equivalent expression,  which wiki corrected me on, e^((lnA)B) .  We have B_A ≡e^(B(lnA))  due to the general  non−commutative nature of matrices.  Luckily I studied some linear algebra  before so applying the method I  found on Wikipedia wasn′t too hard.
Honestly,IhadntknownhowtofindABuntiltoday.SometimeagoIlookedatWikipediatoobtaininformationonsolvingamatrixdifferentialequationoftheformdrdt+Ar=owhereitwassuggestedthatasuitablematrixintegratingfactorbeemployed.In(incorrectly)guessingthattherequiredfactorisoftheformeAIwasmetwithacoolideaconcerningtheexpressioneXforXbeingamatrixandebeingEulersconstant.SowhenIsawyourquestiononABIthoughtabouttheequivalentexpression,whichwikicorrectedmeon,e(lnA)B.WehaveBAeB(lnA)duetothegeneralnoncommutativenatureofmatrices.LuckilyIstudiedsomelinearalgebrabeforesoapplyingthemethodIfoundonWikipediawasnttoohard.
Commented by Rasheed Soomro last updated on 23/Nov/15
THaNkSsss for Sharing thoughts with open mind!  It can be said that my question has become cause to  increase your knowledge and interest AND your   Sharing−Knowledge has become cause to increase  my knowledge!  Actually the question is result of my imagination,  otherwise my knowledge regarding Matrices is of  elementary level.  Your comment contains an expression ′ B_( A) ≡e^(B(ln A)) ...due to  non−commutative nature...′.  I would like to know  the meaning of B_( A) . Considering non−commutative  nature ...shouldn′t we write   B^A  as non−commutative  part of A^B  ?
THaNkSsssforSharingthoughtswithopenmind!ItcanbesaidthatmyquestionhasbecomecausetoincreaseyourknowledgeandinterestANDyourSharingKnowledgehasbecomecausetoincreasemyknowledge!Actuallythequestionisresultofmyimagination,otherwisemyknowledgeregardingMatricesisofelementarylevel.YourcommentcontainsanexpressionBAeB(lnA)duetononcommutativenature.IwouldliketoknowthemeaningofBA.ConsideringnoncommutativenatureshouldntwewriteBAasnoncommutativepartofAB?
Commented by Yozzi last updated on 23/Nov/15
The wiki indicated that while  A^B =e^((lnA)B) , ^A B=e^(B(lnA)) .  I just figured out how to obtain   left−hand exponents. I was trying  to do so by writting B_A ...
ThewikiindicatedthatwhileAB=e(lnA)B,AB=eB(lnA).Ijustfiguredouthowtoobtainlefthandexponents.IwastryingtodosobywrittingBA
Commented by Rasheed Soomro last updated on 23/Nov/15
THANKS !
THANKS!

Leave a Reply

Your email address will not be published. Required fields are marked *