Menu Close

A-1-2-3-n-2-B-15-16-n-A-B-42-n-




Question Number 10347 by konen last updated on 04/Feb/17
A=1+2+3+...+n−2  B=15+16+.....+n  A−B=42⇒n=?
$$\mathrm{A}=\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\mathrm{n}−\mathrm{2} \\ $$$$\mathrm{B}=\mathrm{15}+\mathrm{16}+…..+\mathrm{n} \\ $$$$\mathrm{A}−\mathrm{B}=\mathrm{42}\Rightarrow\mathrm{n}=? \\ $$
Answered by mrW1 last updated on 05/Feb/17
A=Σ_(k=1) ^(n−2) k=(((n−2)(n−1))/2)=((n^2 −3n+2)/2)  B=Σ_(k=15) ^n k=(((n+15)(n−14))/2)=((n^2 +n−210)/2)  A−B=42  ((n^2 −3n+2−n^2 −n+210)/2)=42  ((212−4n)/2)=42  n=((212−84)/4)=32
$${A}=\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{2}} {\sum}}{k}=\frac{\left({n}−\mathrm{2}\right)\left({n}−\mathrm{1}\right)}{\mathrm{2}}=\frac{{n}^{\mathrm{2}} −\mathrm{3}{n}+\mathrm{2}}{\mathrm{2}} \\ $$$${B}=\underset{{k}=\mathrm{15}} {\overset{{n}} {\sum}}{k}=\frac{\left({n}+\mathrm{15}\right)\left({n}−\mathrm{14}\right)}{\mathrm{2}}=\frac{{n}^{\mathrm{2}} +{n}−\mathrm{210}}{\mathrm{2}} \\ $$$${A}−{B}=\mathrm{42} \\ $$$$\frac{{n}^{\mathrm{2}} −\mathrm{3}{n}+\mathrm{2}−{n}^{\mathrm{2}} −{n}+\mathrm{210}}{\mathrm{2}}=\mathrm{42} \\ $$$$\frac{\mathrm{212}−\mathrm{4}{n}}{\mathrm{2}}=\mathrm{42} \\ $$$${n}=\frac{\mathrm{212}−\mathrm{84}}{\mathrm{4}}=\mathrm{32} \\ $$
Answered by arge last updated on 05/Feb/17
      n=((2S_n )/(a_1 +a_n ))    n=((a_n −a_1 )/d) +1    ((2S_n )/(a_1 +a_n )) =((a_n −a_1 )/d)  +1  d=1  S_n =(((a_1 +a_n )(a_n −a_1 +d))/(2d))    S_n A=(((n−2)(n−1))/2)  d=1    S_n B=(((n−14)(n+15))/2)    S_n A−S_n B=42    (((n−2)(n−1))/2) − (((n−14)(n+15))/2) =42    n= 32∵∵∵Rta
$$ \\ $$$$ \\ $$$$ \\ $$$${n}=\frac{\mathrm{2}{S}_{{n}} }{{a}_{\mathrm{1}} +{a}_{{n}} } \\ $$$$ \\ $$$${n}=\frac{{a}_{{n}} −{a}_{\mathrm{1}} }{{d}}\:+\mathrm{1} \\ $$$$ \\ $$$$\frac{\mathrm{2}{S}_{{n}} }{{a}_{\mathrm{1}} +{a}_{{n}} }\:=\frac{{a}_{{n}} −{a}_{\mathrm{1}} }{{d}}\:\:+\mathrm{1} \\ $$$${d}=\mathrm{1} \\ $$$${S}_{{n}} =\frac{\left({a}_{\mathrm{1}} +{a}_{{n}} \right)\left({a}_{{n}} −{a}_{\mathrm{1}} +{d}\right)}{\mathrm{2}{d}} \\ $$$$ \\ $$$${S}_{{n}} {A}=\frac{\left({n}−\mathrm{2}\right)\left({n}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$${d}=\mathrm{1} \\ $$$$ \\ $$$${S}_{{n}} {B}=\frac{\left({n}−\mathrm{14}\right)\left({n}+\mathrm{15}\right)}{\mathrm{2}} \\ $$$$ \\ $$$${S}_{{n}} {A}−{S}_{{n}} {B}=\mathrm{42} \\ $$$$ \\ $$$$\frac{\left({n}−\mathrm{2}\right)\left({n}−\mathrm{1}\right)}{\mathrm{2}}\:−\:\frac{\left({n}−\mathrm{14}\right)\left({n}+\mathrm{15}\right)}{\mathrm{2}}\:=\mathrm{42} \\ $$$$ \\ $$$${n}=\:\mathrm{32}\because\because\because{Rta} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *