Menu Close

a-1-2-a-n-1-gt-a-n-a-n-1-a-n-2-2-a-n-1-a-n-a-n-help-me-please-




Question Number 8347 by sou1618 last updated on 09/Oct/16
a_1 =2 ,  a_(n+1) >a_n   (a_(n+1) −a_n )^2 = 2(a_(n+1) +a_n )   a_n =??  help me please.
a1=2,an+1>an(an+1an)2=2(an+1+an)an=??helpmeplease.
Commented by sou1618 last updated on 09/Oct/16
a_(n+1) =a_n +1+(√(4a_n +1))  a_1 =2  a_2 =2+1+(√(8+1))=6  a_3 =6+1+(√(24+1))=12  a_4 =12+1+(√(48+1))=20  a_5 =20+1+(√(80+1))=30  ...  a_2 −a_1 =4  a_3 −a_2 =6  a_4 −a_3 =8  a_5 −a_4 =10  ...    a_(n+1) −a_n =2(n+1)  a_(n+1) =a_n +2n+2  ,  a_1 =2  so  a_n =2+Σ_(k=1) ^(n−1) (2n+2)  a_n =2+(2/2)n(n−1)+2(n−1)  a_n =n(n−1)+2n  a_n =n(n+1)    isn′t it strict?
an+1=an+1+4an+1a1=2a2=2+1+8+1=6a3=6+1+24+1=12a4=12+1+48+1=20a5=20+1+80+1=30a2a1=4a3a2=6a4a3=8a5a4=10an+1an=2(n+1)an+1=an+2n+2,a1=2soan=2+n1k=1(2n+2)an=2+22n(n1)+2(n1)an=n(n1)+2nan=n(n+1)isntitstrict?
Commented by Rasheed Soomro last updated on 12/Oct/16
(a_(n+1) −a_n )^2 = 2(a_(n+1) +a_n )⇒^(?) a_(n+1) =a_n +1+(√(4a_n +1))  Please insert some steps.
(an+1an)2=2(an+1+an)?an+1=an+1+4an+1Pleaseinsertsomesteps.
Commented by prakash jain last updated on 14/Oct/16
(a_(n+1) −a_n )^2 −2(a_(n+1) −a_n )+1−4a_n −1=0  (a_(n+1) −a_n −1)^2 =4a_n +1  a_(n+1) =1+a_n +(√(4a_n +1))  If a_n  is a polynomial then 4a_n +1 is a perfect  square of polynomial.  Let 4a_n +1=(c_0 +c_1 n+c_2 n^2 +c_3 n^3 +...+c_k n^k )^2   a_n =[(c_0 +c_1 n+c_2 n^2 +c_3 n^3 +...+c_k n^k )^2 −1]/4  a_(n+1) =[(c_0 +c_1 (n+1)+c_2 (n+1)^2 +c_3 (n+1)^3 +...)^2 −1]/4  Try for   4a_n +1=(c_0 +c_1 n+c_2 n^2 )^2   a_n =(1/4)[(c_0 +c_1 n+c_2 n^2 )^2 −1]  Equating coeffcients   n^4 : (1/4)c_2 ^2 =(1/4)c_2 ^2   n^3 :c_2 ^2 +(1/2)c_1 c_2 =(1/2)c_1 c_2 ⇒c_2 =0  No polynomial solution is  possible if 4a_n +1 is a square of degree higher  than 1.  Degree 1  4a_n +1=(c_0 +c_1 n)^2   n^2 :(1/4)c_1 ^2 =(1/4)c_1 ^2   n: (1/2)c_1 c_0 +(1/2)c_1 ^2 =(1/2)c_1 c_0 +c_1 ⇒c_1 =2  n^0 :(c_0 ^2 /4)+((c_1 c_0 )/2)+(c_1 ^2 /4)−(1/4)=(c_0 ^2 /4)+c_0 +(3/4)  ⇒c_0 +1−1/4=c_0 +3/4  a_n =((c_0 +2n)^2 −1)/4  a_1 =2⇒(c_0 +2)^2 −1=8  c_0 ^2 +4c_0 +4−1=8  c_0 ^2 +4c_0 −5=0  c_0 ^2 +5c_0 −c_0 −5=0  (c_0 −1)(c_0 +5)^2 =0  a_n = { ((((1+2n)^2 −1)/4=n^2 +n)),((((−5+2n)^2 −1)/4=n^2 −5n+6=(n−2)(n−3))) :}  check  (a_(n+1) −a_n )^2 =[(n−1)(n−2)−(n−2)(n−3)]^2   =4(n−2)^2   2(a_(n+1) +a_n )=2(n−2)(2n−4)=4(n−2)^2   comparing results   determinant ((n,(n(n+1)),((n−2)(n−3))),(1,2,2),(2,6,0),(3,(12),0),(4,(20),2),(5,(30),6))
(an+1an)22(an+1an)+14an1=0(an+1an1)2=4an+1an+1=1+an+4an+1Ifanisapolynomialthen4an+1isaperfectsquareofpolynomial.Let4an+1=(c0+c1n+c2n2+c3n3++cknk)2an=[(c0+c1n+c2n2+c3n3++cknk)21]/4an+1=[(c0+c1(n+1)+c2(n+1)2+c3(n+1)3+)21]/4Tryfor4an+1=(c0+c1n+c2n2)2an=14[(c0+c1n+c2n2)21]Equatingcoeffcientsn4:14c22=14c22n3:c22+12c1c2=12c1c2c2=0Nopolynomialsolutionispossibleif4an+1isasquareofdegreehigherthan1.Degree14an+1=(c0+c1n)2n2:14c12=14c12n:12c1c0+12c12=12c1c0+c1c1=2n0:c024+c1c02+c12414=c024+c0+34c0+11/4=c0+3/4an=((c0+2n)21)/4a1=2(c0+2)21=8c02+4c0+41=8c02+4c05=0c02+5c0c05=0(c01)(c0+5)2=0an={((1+2n)21)/4=n2+n((5+2n)21)/4=n25n+6=(n2)(n3)check(an+1an)2=[(n1)(n2)(n2)(n3)]2=4(n2)22(an+1+an)=2(n2)(2n4)=4(n2)2comparingresults|nn(n+1)(n2)(n3)122260312042025306|
Commented by prakash jain last updated on 14/Oct/16
The second solution does not meet the  condition that a_(n+1) >a_n
Thesecondsolutiondoesnotmeettheconditionthatan+1>an
Commented by sou1618 last updated on 15/Oct/16
a_(n+1) ^( 2) −2a_(n+1) a_n +a_n ^( 2) −2a_(n+1) −2a_n =0  a_(n+1) ^( 2) −2(a_n +1)a_(n+1) +a_n ^( 2) −2a_n =0  a_(n+1) =a_n +1±(√((a_n +1)^2 −(a_n ^( 2) −2a_n )))  a_(n+1) =a_n +1±(√(4a_n +1))  ∗ a_(n+1) >a_n   so  a_(n+1) =a_n +1(√(4a_n +1))  thanks.  I have to study hard....
an+122an+1an+an22an+12an=0an+122(an+1)an+1+an22an=0an+1=an+1±(an+1)2(an22an)an+1=an+1±4an+1an+1>ansoan+1=an+14an+1thanks.Ihavetostudyhard.

Leave a Reply

Your email address will not be published. Required fields are marked *