Menu Close

A-2-1-1-3-1-2-2-1-2-find-the-inverse-of-this-matrix-




Question Number 141193 by Eric002 last updated on 16/May/21
A= [((2  ),1,(−1)),((−3),(−1),2),((−2),1,2) ]find the inverse of  this matrix
A=[211312212]findtheinverseofthismatrix
Answered by bramlexs22 last updated on 16/May/21
 Cayley−Hamilton theorem   ∣A−λI∣ = 0  ⇒λ^3 −(tr A)λ^2 + (((minor of the terms)),((on the leading diagonal of A)) ) λ−det(A)=0  ⇒λ^3 −3λ^2 −λ−1=0  ⇒p(A)= 0  ⇒ [A^3 −3A^2 −A−I= 0 ]×A^(−1)   ⇒A^2 −3A−I−A^(−1)  = 0  ⇒A^(−1)  = A^2 −3A−I
CayleyHamiltontheoremAλI=0λ3(trA)λ2+(minorofthetermsontheleadingdiagonalofA)λdet(A)=0λ33λ2λ1=0p(A)=0[A33A2AI=0]×A1A23AIA1=0A1=A23AI
Commented by Eric002 last updated on 16/May/21
well done sir
welldonesir

Leave a Reply

Your email address will not be published. Required fields are marked *