Menu Close

a-24-a-3-b-2-a-2a-b-2-a-b-2-20-would-you-solve-this-




Question Number 5159 by 1771727373 last updated on 24/Apr/16
a+24((a−3)/(b^2 +a))=2a−b^(2 )   a×b^2 =20    would you solve this?
a+24a3b2+a=2ab2a×b2=20wouldyousolvethis?
Answered by FilupSmith last updated on 24/Apr/16
ab^2 =20 ⇒ b^2 =20a    ∴ a+24((a−3)/(b^2 +a))=2a−b^(2 )   ⇒  a+24((a−3)/(((20)/a)+a))=2a−((20)/a)  a+24((a−3)/((20+a^2 )/a))=((2a^2 −20)/a)  a+24((a^2 −3a)/(20+a^2 ))=((2a^2 −20)/a)  a^2 +24a(a^2 −3a)=(2a^2 −20)(20+a^2 )  a^2 +24a^3 −72a=40a^2 +2a^4 −20^2 −20a^2   −19a^2 +24a^3 −2a^4 −72a+400=0  19a^2 −24a^3 +2a^4 +72a−400=0  2a^4 −24a^3 +19a^2 +72a−400=0  continue
ab2=20b2=20aa+24a3b2+a=2ab2a+24a320a+a=2a20aa+24a320+a2a=2a220aa+24a23a20+a2=2a220aa2+24a(a23a)=(2a220)(20+a2)a2+24a372a=40a2+2a420220a219a2+24a32a472a+400=019a224a3+2a4+72a400=02a424a3+19a2+72a400=0continue
Answered by Yozzii last updated on 28/Apr/16
a(b^2 +a)+24(a−3)=(2a−b^2 )(b^2 +a)  ab^2 +a^2 +24a−72=2ab^2 +2a^2 −b^4 −ab^2   b^4 −a^2 +24a−72=0  b^4 =a^2 −24a+72  b^4 =((400)/a^2 )  ∴ 400=a^4 −24a^3 +72a^2   a^4 −24a^3 +72a^2 −400=0          (∗)    Let f(x)=x^4 −24x^3 +72x^2 −400.  By trial and error, and application  of the intermediate value theorem,   a root for the equation exists in  the interval [20.5,20.6].  f^′ (x)=4x^3 −72x^2 +144x  By the Newton−Raphson method  the n+1 th approximation to the  root of f(x)=0, given the n th approximation,  is found by  x_(n+1) =x_n −((f(x_n ))/(f^′ (x_n )))  x_(n+1) =((3x_n ^4 −48x_n ^3 +72x_n ^2 +400)/(4x_n ^3 −72x_n ^2 +144x_n ))  Let x_1 =((20.5+20.6)/2)=20.55.  ⇒x_2 ≈20.540974  ⇒x_3 ≈20.540961  ⇒x_4 ≈20.540961  ∴ a≈20.541. Note that (∗) has more  than just one real root. This same  method could be used to search for  other real roots. Since b^2 =((20)/a), if  b∈R⇒a>0 ∴ b=±(√((20)/(20.541)))≈±0.9867
a(b2+a)+24(a3)=(2ab2)(b2+a)ab2+a2+24a72=2ab2+2a2b4ab2b4a2+24a72=0b4=a224a+72b4=400a2400=a424a3+72a2a424a3+72a2400=0()Letf(x)=x424x3+72x2400.Bytrialanderror,andapplicationoftheintermediatevaluetheorem,arootfortheequationexistsintheinterval[20.5,20.6].f(x)=4x372x2+144xBytheNewtonRaphsonmethodthen+1thapproximationtotherootoff(x)=0,giventhenthapproximation,isfoundbyxn+1=xnf(xn)f(xn)xn+1=3xn448xn3+72xn2+4004xn372xn2+144xnLetx1=20.5+20.62=20.55.x220.540974x320.540961x420.540961a20.541.Notethat()hasmorethanjustonerealroot.Thissamemethodcouldbeusedtosearchforotherrealroots.Sinceb2=20a,ifbRa>0b=±2020.541±0.9867

Leave a Reply

Your email address will not be published. Required fields are marked *