Menu Close

A-2B-3C-4D-are-positive-numbers-forming-a-geometric-series-prov-that-A-3C-B-2D-gt-2-




Question Number 11956 by Mahmoud A.R last updated on 07/Apr/17
A , 2B ,3C ,4D   are positive numbers forming a   geometric series   prov that :  (A + 3C) (B + 2D) > 2
A,2B,3C,4Darepositivenumbersformingageometricseriesprovthat:(A+3C)(B+2D)>2
Commented by ajfour last updated on 07/Apr/17
if A=(1/(64)), 2B=(1/(32)), 3C=(1/(16)), 4D=(1/8)  (A+3C)(B+2D)= (5/(64))×(5/(64)) > 2   !!????
ifA=164,2B=132,3C=116,4D=18(A+3C)(B+2D)=564×564>2!!????
Commented by FilupS last updated on 07/Apr/17
A, B, C, D > 0     Sequence:  A, 2B, 3C, 4D  ∴2B=nA  ⇒  B=((nA)/2)  3C=n(2B)=n^2 A  4D=n(3C)=n^3 A  ⇒  2D=((n^3 A)/(2 ))  (A+3C)(B+2D)=(A+n^2 A)(((nA)/2)+((n^3 A)/2))  =A^2 (1+n^2 )((1/2)(n+n^3 ))  =(1/2)nA^2 (1+n^2 )(1+n^2 )  =(1/2)nA^2 (1+n^2 )^2   (1+n^2 )^2 >1  A^2 >0  let (1/2)A^2 (1+n^2 )^2 =k,   k>0  =nk    ????
A,B,C,D>0Sequence:A,2B,3C,4D2B=nAB=nA23C=n(2B)=n2A4D=n(3C)=n3A2D=n3A2(A+3C)(B+2D)=(A+n2A)(nA2+n3A2)=A2(1+n2)(12(n+n3))=12nA2(1+n2)(1+n2)=12nA2(1+n2)2(1+n2)2>1A2>0let12A2(1+n2)2=k,k>0=nk????

Leave a Reply

Your email address will not be published. Required fields are marked *