Question Number 77394 by jagoll last updated on 06/Jan/20
$$\mathrm{a}\:\mathrm{6}\:\mathrm{digit}\:\mathrm{number}\:\mathrm{formed}\: \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{first}\:\mathrm{number}\:\mathrm{is}\:\mathrm{2}\:\mathrm{and}\: \\ $$$$\mathrm{contains}\:\mathrm{4}\:\mathrm{equal}\:\mathrm{number}.\:\mathrm{many} \\ $$$$\mathrm{number}\:\mathrm{can}\:\mathrm{be}\:\mathrm{made}\:\mathrm{are}\: \\ $$
Commented by mr W last updated on 06/Jan/20
$${the}\:{first}\:{digit}\:{is}\:\mathrm{2},\:{that}'{s}\:{clear}. \\ $$$${it}\:{must}\:{contain}\:\mathrm{4}\:{equal}\:{digits}.\:{but} \\ $$$${what}\:{about}\:{the}\:{remaining}\:{two} \\ $$$${digits}?\:{may}\:{they}\:{the}\:{same}\:{digit}\:{or} \\ $$$${they}\:{must}\:{be}\:{different}\:{digits}? \\ $$$${example}:\:{are}\:\mathrm{233332}\:{and}\:\mathrm{233222} \\ $$$${valid}? \\ $$
Commented by jagoll last updated on 06/Jan/20
$${valid}\:{sir} \\ $$
Commented by jagoll last updated on 06/Jan/20
$${i}\:{got}\:\mathrm{3500}\:{sir}?\:{it}\:{correct}? \\ $$
Commented by mr W last updated on 06/Jan/20
$${i}\:{think}\:{it}'{s}\:{not}\:{correct}\:{sir}. \\ $$
Answered by mr W last updated on 06/Jan/20
$${case}\:\mathrm{1}: \\ $$$${in}\:{the}\:{remaining}\:\mathrm{5}\:{digits}\:{we}\:{have} \\ $$$$\mathrm{3}\:{times}\:{the}\:{digit}\:\mathrm{2}.\: \\ $$$${case}\:\mathrm{1}{a}:\:{type}\:\mathrm{2222}{XX} \\ $$$$\Rightarrow\mathrm{9}×\frac{\mathrm{5}!}{\mathrm{3}!\mathrm{2}!}=\mathrm{90} \\ $$$${case}\:\mathrm{1}{b}:\:{type}\:\mathrm{2222}{XY} \\ $$$$\Rightarrow{C}_{\mathrm{2}} ^{\mathrm{9}} ×\frac{\mathrm{5}!}{\mathrm{3}!}=\mathrm{720} \\ $$$${case}\:\mathrm{2}:\:{type}\:\mathrm{2}{XXXXY} \\ $$$${in}\:{the}\:{remaining}\:\mathrm{5}\:{digits}\:{we}\:{have} \\ $$$$\mathrm{4}\:{times}\:{an}\:{other}\:{digit}\:{than}\:\mathrm{2}. \\ $$$$\Rightarrow\mathrm{9}×\mathrm{9}×\frac{\mathrm{5}!}{\mathrm{4}!}=\mathrm{405} \\ $$$$ \\ $$$${totally}: \\ $$$$\mathrm{90}+\mathrm{720}+\mathrm{405}=\mathrm{1215}\:{numbers} \\ $$
Commented by jagoll last updated on 06/Jan/20
$${how}\:{about}\:\mathrm{2}{XXXX}\mathrm{2}? \\ $$
Commented by jagoll last updated on 06/Jan/20
$$=\mathrm{9}×\:\frac{\mathrm{5}!}{\mathrm{4}!}\:=\mathrm{4}\:\mathrm{5} \\ $$
Commented by mr W last updated on 06/Jan/20
$${this}\:{is}\:{included}\:{in}\:\mathrm{2}{XXXXY}. \\ $$$${X}\:{can}\:{be}\:{one}\:{of}\:\mathrm{9}\:{digits}\:\left(\mathrm{0},\mathrm{1},\mathrm{3},\mathrm{4},…\mathrm{9}\right) \\ $$$${Y}\:{can}\:{be}\:{one}\:{of}\:\mathrm{9}\:{digits}\:\left(\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},…\mathrm{9}\right)−{X} \\ $$
Commented by jagoll last updated on 06/Jan/20
$${o}\:{yes}\:{sir} \\ $$
Commented by jagoll last updated on 06/Jan/20
$${fix}\:{totally}\:=\:\mathrm{1215}\:{sir} \\ $$
Commented by peter frank last updated on 06/Jan/20
$${thank}\:{you} \\ $$