Question Number 142740 by mathdanisur last updated on 04/Jun/21
$$\frac{{a}}{{b}+{c}}\:=\:\frac{{b}}{{a}+{c}}\:=\:\frac{{c}}{{a}+{b}}\:\:;\:\:{a}\centerdot{b}\centerdot{c}\:=\:\mathrm{12} \\ $$$$\left({b}+{c}\right)\centerdot\left({a}+{c}\right)\centerdot\left({a}+{b}\right)\:=\:? \\ $$
Commented by MJS_new last updated on 05/Jun/21
$$\mathrm{I}\:\mathrm{found}\:\mathrm{2}\:\mathrm{possibilities} \\ $$$$\left(\mathrm{1}\right)\:{a}={b}={c}=\sqrt[{\mathrm{3}}]{\mathrm{12}}\:\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\mathrm{96} \\ $$$$\left(\mathrm{2}\right)\:{a}<{b}<{c}\:\Rightarrow\:{a}=−\sqrt[{\mathrm{3}}]{\mathrm{96}}\wedge{b}=\sqrt[{\mathrm{3}}]{\mathrm{12}}−\sqrt[{\mathrm{6}}]{\mathrm{486}}\wedge{c}=\sqrt[{\mathrm{3}}]{\mathrm{12}}+\sqrt[{\mathrm{6}}]{\mathrm{486}}\:\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:−\mathrm{12} \\ $$
Commented by iloveisrael last updated on 05/Jun/21
$${yes}…\:{i}\:{got}\:\mathrm{2}\:{possibilities}\: \\ $$
Commented by mathdanisur last updated on 05/Jun/21
$${thanks}\:{sir} \\ $$
Answered by Olaf_Thorendsen last updated on 05/Jun/21
$$\frac{{a}}{{b}+{c}}\:=\:\frac{{b}}{{c}+{a}}\:=\:\frac{{c}}{{a}+{b}} \\ $$$$\Rightarrow\:\frac{{b}+{c}}{{a}}\:=\:\frac{{c}+{a}}{{b}}\:=\:\frac{{a}+{b}}{{c}}\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{Let}\:{s}\:=\:{a}+{b}+{c} \\ $$$$\left(\mathrm{1}\right)\::\:\frac{{s}−{a}}{{a}}\:=\:\frac{{s}−{b}}{{b}}\:=\:\frac{{s}−{c}}{{c}} \\ $$$$\Rightarrow\:\frac{{s}}{{a}}\:=\:\frac{{s}}{{b}}\:=\:\frac{{s}}{{c}} \\ $$$$\:\frac{\mathrm{1}}{{a}}\:=\:\frac{\mathrm{1}}{{b}}\:=\:\frac{\mathrm{1}}{{c}} \\ $$$$\Rightarrow\:{a}\:=\:{b}\:=\:{c} \\ $$$${abc}\:=\:\mathrm{12}\:=\:{a}^{\mathrm{3}} \:=\:{b}^{\mathrm{3}} \:=\:{c}^{\mathrm{3}} \\ $$$$\left({b}+{c}\right)\left({a}+{c}\right)\left({a}+{b}\right)\:=\:\left(\mathrm{2}{a}\right)^{\mathrm{3}} \:=\:\mathrm{8}{a}^{\mathrm{3}} \:=\:\mathrm{96} \\ $$
Commented by mathdanisur last updated on 05/Jun/21
$${thanks}\:{sir} \\ $$
Answered by iloveisrael last updated on 05/Jun/21
$$\:{Given}\:{a}×{b}×{c}=\mathrm{12}\:{and}\: \\ $$$$\:\frac{{a}}{{b}+{c}}\:=\:\frac{{b}}{{a}+{c}}\:=\:\frac{{c}}{{a}+{b}}\:{then}\: \\ $$$$\:\left({b}+{c}\right)\left({a}+{c}\right)\left({a}+{b}\right)=? \\ $$$${let}\:\frac{{a}}{{b}+{c}}\:={k}\:\Rightarrow\begin{cases}{{a}={k}\left({b}+{c}\right)}\\{{b}={k}\left({a}+{c}\right)}\\{{c}={k}\left({a}+{b}\right)}\end{cases} \\ $$$$\Rightarrow{a}+{b}+{c}={k}\left(\mathrm{2}{a}+\mathrm{2}{b}+\mathrm{2}{c}\right) \\ $$$$\Rightarrow\left({a}+{b}+{c}\right)\left(\mathrm{1}−\mathrm{2}{k}\right)=\mathrm{0} \\ $$$$\Rightarrow{a}+{b}+{c}\:=\:\mathrm{0}\:{or}\:{k}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${for}\:{k}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\rightarrow{abc}\:=\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} \left({b}+{c}\right)\left({a}+{c}\right)\left({a}+{b}\right) \\ $$$$\Rightarrow\left({b}+{c}\right)\left({a}+{c}\right)\left({a}+{b}\right)=\mathrm{12}×\mathrm{8}=\mathrm{96} \\ $$$${for}\:{a}=−\left({b}+{c}\right) \\ $$$$\Rightarrow\frac{{b}}{{a}+{c}}\:=\:\frac{{c}}{{a}+{b}}\:=−\mathrm{1}\: \\ $$$$\Rightarrow{a}+{c}=−{b}\:\wedge{a}+{b}=−{c} \\ $$$${then}\:\left({b}+{c}\right)\left({a}+{c}\right)\left({a}+{b}\right)=\left(−{a}\right)\left(−{b}\right)\left(−{c}\right) \\ $$$$\:\:\:\:\:\:=−{abc}\:=\:−\mathrm{12} \\ $$
Commented by mathdanisur last updated on 05/Jun/21
$${thanks}\:{sir} \\ $$
Answered by 1549442205PVT last updated on 05/Jun/21
$$\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}=\frac{\mathrm{b}}{\mathrm{c}+\mathrm{a}}=\frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{a}+\mathrm{b}+\mathrm{b}+\mathrm{c}+\mathrm{c}+\mathrm{a}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}.\frac{\mathrm{b}}{\mathrm{c}+\mathrm{a}}.\frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}=\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\Rightarrow\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{b}+\mathrm{c}\right)\left(\mathrm{c}+\mathrm{a}\right)=\mathrm{8abc}=\mathrm{8}.\mathrm{12}=\mathrm{96} \\ $$
Commented by mathdanisur last updated on 05/Jun/21
$${thanks}\:{sir} \\ $$