Menu Close

a-b-c-b-a-c-c-a-b-a-b-c-12-b-c-a-c-a-b-




Question Number 142740 by mathdanisur last updated on 04/Jun/21
(a/(b+c)) = (b/(a+c)) = (c/(a+b))  ;  a∙b∙c = 12  (b+c)∙(a+c)∙(a+b) = ?
$$\frac{{a}}{{b}+{c}}\:=\:\frac{{b}}{{a}+{c}}\:=\:\frac{{c}}{{a}+{b}}\:\:;\:\:{a}\centerdot{b}\centerdot{c}\:=\:\mathrm{12} \\ $$$$\left({b}+{c}\right)\centerdot\left({a}+{c}\right)\centerdot\left({a}+{b}\right)\:=\:? \\ $$
Commented by MJS_new last updated on 05/Jun/21
I found 2 possibilities  (1) a=b=c=((12))^(1/3)  ⇒ answer is 96  (2) a<b<c ⇒ a=−((96))^(1/3) ∧b=((12))^(1/3) −((486))^(1/6) ∧c=((12))^(1/3) +((486))^(1/6)  ⇒ answer is −12
$$\mathrm{I}\:\mathrm{found}\:\mathrm{2}\:\mathrm{possibilities} \\ $$$$\left(\mathrm{1}\right)\:{a}={b}={c}=\sqrt[{\mathrm{3}}]{\mathrm{12}}\:\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\mathrm{96} \\ $$$$\left(\mathrm{2}\right)\:{a}<{b}<{c}\:\Rightarrow\:{a}=−\sqrt[{\mathrm{3}}]{\mathrm{96}}\wedge{b}=\sqrt[{\mathrm{3}}]{\mathrm{12}}−\sqrt[{\mathrm{6}}]{\mathrm{486}}\wedge{c}=\sqrt[{\mathrm{3}}]{\mathrm{12}}+\sqrt[{\mathrm{6}}]{\mathrm{486}}\:\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:−\mathrm{12} \\ $$
Commented by iloveisrael last updated on 05/Jun/21
yes... i got 2 possibilities
$${yes}…\:{i}\:{got}\:\mathrm{2}\:{possibilities}\: \\ $$
Commented by mathdanisur last updated on 05/Jun/21
thanks sir
$${thanks}\:{sir} \\ $$
Answered by Olaf_Thorendsen last updated on 05/Jun/21
(a/(b+c)) = (b/(c+a)) = (c/(a+b))  ⇒ ((b+c)/a) = ((c+a)/b) = ((a+b)/c)     (1)  Let s = a+b+c  (1) : ((s−a)/a) = ((s−b)/b) = ((s−c)/c)  ⇒ (s/a) = (s/b) = (s/c)   (1/a) = (1/b) = (1/c)  ⇒ a = b = c  abc = 12 = a^3  = b^3  = c^3   (b+c)(a+c)(a+b) = (2a)^3  = 8a^3  = 96
$$\frac{{a}}{{b}+{c}}\:=\:\frac{{b}}{{c}+{a}}\:=\:\frac{{c}}{{a}+{b}} \\ $$$$\Rightarrow\:\frac{{b}+{c}}{{a}}\:=\:\frac{{c}+{a}}{{b}}\:=\:\frac{{a}+{b}}{{c}}\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{Let}\:{s}\:=\:{a}+{b}+{c} \\ $$$$\left(\mathrm{1}\right)\::\:\frac{{s}−{a}}{{a}}\:=\:\frac{{s}−{b}}{{b}}\:=\:\frac{{s}−{c}}{{c}} \\ $$$$\Rightarrow\:\frac{{s}}{{a}}\:=\:\frac{{s}}{{b}}\:=\:\frac{{s}}{{c}} \\ $$$$\:\frac{\mathrm{1}}{{a}}\:=\:\frac{\mathrm{1}}{{b}}\:=\:\frac{\mathrm{1}}{{c}} \\ $$$$\Rightarrow\:{a}\:=\:{b}\:=\:{c} \\ $$$${abc}\:=\:\mathrm{12}\:=\:{a}^{\mathrm{3}} \:=\:{b}^{\mathrm{3}} \:=\:{c}^{\mathrm{3}} \\ $$$$\left({b}+{c}\right)\left({a}+{c}\right)\left({a}+{b}\right)\:=\:\left(\mathrm{2}{a}\right)^{\mathrm{3}} \:=\:\mathrm{8}{a}^{\mathrm{3}} \:=\:\mathrm{96} \\ $$
Commented by mathdanisur last updated on 05/Jun/21
thanks sir
$${thanks}\:{sir} \\ $$
Answered by iloveisrael last updated on 05/Jun/21
 Given a×b×c=12 and    (a/(b+c)) = (b/(a+c)) = (c/(a+b)) then    (b+c)(a+c)(a+b)=?  let (a/(b+c)) =k ⇒ { ((a=k(b+c))),((b=k(a+c))),((c=k(a+b))) :}  ⇒a+b+c=k(2a+2b+2c)  ⇒(a+b+c)(1−2k)=0  ⇒a+b+c = 0 or k=(1/2)  for k=(1/2)  →abc = ((1/2))^3 (b+c)(a+c)(a+b)  ⇒(b+c)(a+c)(a+b)=12×8=96  for a=−(b+c)  ⇒(b/(a+c)) = (c/(a+b)) =−1   ⇒a+c=−b ∧a+b=−c  then (b+c)(a+c)(a+b)=(−a)(−b)(−c)        =−abc = −12
$$\:{Given}\:{a}×{b}×{c}=\mathrm{12}\:{and}\: \\ $$$$\:\frac{{a}}{{b}+{c}}\:=\:\frac{{b}}{{a}+{c}}\:=\:\frac{{c}}{{a}+{b}}\:{then}\: \\ $$$$\:\left({b}+{c}\right)\left({a}+{c}\right)\left({a}+{b}\right)=? \\ $$$${let}\:\frac{{a}}{{b}+{c}}\:={k}\:\Rightarrow\begin{cases}{{a}={k}\left({b}+{c}\right)}\\{{b}={k}\left({a}+{c}\right)}\\{{c}={k}\left({a}+{b}\right)}\end{cases} \\ $$$$\Rightarrow{a}+{b}+{c}={k}\left(\mathrm{2}{a}+\mathrm{2}{b}+\mathrm{2}{c}\right) \\ $$$$\Rightarrow\left({a}+{b}+{c}\right)\left(\mathrm{1}−\mathrm{2}{k}\right)=\mathrm{0} \\ $$$$\Rightarrow{a}+{b}+{c}\:=\:\mathrm{0}\:{or}\:{k}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${for}\:{k}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\rightarrow{abc}\:=\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} \left({b}+{c}\right)\left({a}+{c}\right)\left({a}+{b}\right) \\ $$$$\Rightarrow\left({b}+{c}\right)\left({a}+{c}\right)\left({a}+{b}\right)=\mathrm{12}×\mathrm{8}=\mathrm{96} \\ $$$${for}\:{a}=−\left({b}+{c}\right) \\ $$$$\Rightarrow\frac{{b}}{{a}+{c}}\:=\:\frac{{c}}{{a}+{b}}\:=−\mathrm{1}\: \\ $$$$\Rightarrow{a}+{c}=−{b}\:\wedge{a}+{b}=−{c} \\ $$$${then}\:\left({b}+{c}\right)\left({a}+{c}\right)\left({a}+{b}\right)=\left(−{a}\right)\left(−{b}\right)\left(−{c}\right) \\ $$$$\:\:\:\:\:\:=−{abc}\:=\:−\mathrm{12} \\ $$
Commented by mathdanisur last updated on 05/Jun/21
thanks sir
$${thanks}\:{sir} \\ $$
Answered by 1549442205PVT last updated on 05/Jun/21
(a/(b+c))=(b/(c+a))=(c/(a+b))=((a+b+c)/(a+b+b+c+c+a))=(1/2)  ⇒(a/(b+c)).(b/(c+a)).(c/(a+b))=((1/2))^3 =(1/8)  ⇒(a+b)(b+c)(c+a)=8abc=8.12=96
$$\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}=\frac{\mathrm{b}}{\mathrm{c}+\mathrm{a}}=\frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{a}+\mathrm{b}+\mathrm{b}+\mathrm{c}+\mathrm{c}+\mathrm{a}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}.\frac{\mathrm{b}}{\mathrm{c}+\mathrm{a}}.\frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}=\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\Rightarrow\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{b}+\mathrm{c}\right)\left(\mathrm{c}+\mathrm{a}\right)=\mathrm{8abc}=\mathrm{8}.\mathrm{12}=\mathrm{96} \\ $$
Commented by mathdanisur last updated on 05/Jun/21
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *