Menu Close

a-b-c-C-x-0-a-y-0-b-z-0-c-x-n-1-x-n-y-n-y-n-1-y-n-z-n-z-n-1-z-n-x-n-x-n-y-n-z-n-n-1-




Question Number 4795 by 123456 last updated on 13/Mar/16
a,b,c∈C  x_0 =a  y_0 =b  z_0 =c  x_(n+1) =x_n −y_n   y_(n+1) =y_n −z_n   z_(n+1) =z_n −x_n   x_n +y_n +z_n =?,n≥1
a,b,cCx0=ay0=bz0=cxn+1=xnynyn+1=ynznzn+1=znxnxn+yn+zn=?,n1
Answered by Yozzii last updated on 13/Mar/16
Adding the three recurrence equations  we obtain   x_(n+1) +y_(n+1) +z_(n+1) =x_n −y_n +y_n −z_n +z_n −x_n =0.  ⇒x_n +y_n +z_n =0 for all n∈N. (∗)  Corollary: Since x_0 =a, y_0 =b, z_0 =c  ⇒ a+b+c=0 from (∗) where a,b,c∈C.  Indeed, ∃a,b,c∈C such that a+b+c=0.  E.g a=−1,b=3, c=−2 or a=1,b=e^(2πi/3) ,c=e^(−2πi/3) .
Addingthethreerecurrenceequationsweobtainxn+1+yn+1+zn+1=xnyn+ynzn+znxn=0.xn+yn+zn=0forallnN.()Corollary:Sincex0=a,y0=b,z0=ca+b+c=0from()wherea,b,cC.Indeed,a,b,cCsuchthata+b+c=0.E.ga=1,b=3,c=2ora=1,b=e2πi/3,c=e2πi/3.
Commented by prakash jain last updated on 13/Mar/16
How do you conclude a+b+c=0.  Only relation for x_(n+1)  is given so   a+b+c need not be equal to zero.  x_n +y_n +z_n =0 ∀(a,b,c)∈C^3  if n≥1
Howdoyouconcludea+b+c=0.Onlyrelationforxn+1isgivensoa+b+cneednotbeequaltozero.xn+yn+zn=0(a,b,c)C3ifn1
Commented by Yozzii last updated on 13/Mar/16
Sorry. Error made.
Sorry.Errormade.

Leave a Reply

Your email address will not be published. Required fields are marked *