Menu Close

a-b-c-d-0-1-sin-a-pix-cos-b-pix-x-c-1-x-d-dx-1-1-1-1-




Question Number 613 by 123456 last updated on 11/Feb/15
Ξ(a,b,c,d)=∫_0 ^1  ((sin^a (πx)cos^b (πx))/(x^c (1−x)^d ))dx  Ξ(1,1,1,1)=?
Ξ(a,b,c,d)=10sina(πx)cosb(πx)xc(1x)ddxΞ(1,1,1,1)=?
Commented by prakash jain last updated on 10/Feb/15
Initial simplificaion  Ξ(1,1,1,1)=∫_0 ^1  ((sin πx cos πx)/(x(1−x)))  Ξ(a,b,0,0)=∫_0 ^1  sin^a (πx)cos^b (πx) dx  Ξ(0,0,1−c,1−d)=∫_0 ^1 ((x^c (1−x)^d )/(x(1−x)))sin πxcos πxdx
InitialsimplificaionΞ(1,1,1,1)=01sinπxcosπxx(1x)Ξ(a,b,0,0)=01sina(πx)cosb(πx)dxΞ(0,0,1c,1d)=01xc(1x)dx(1x)sinπxcosπxdx
Commented by prakash jain last updated on 11/Feb/15
∫_0 ^1 ((sin (πx)cos (πx))/(x(1−x)))=∫_0 ^1 ((sin 2πx)/(x(1−x)))  x=0.5−u⇒dx=−du, x=0, u=0.5, x=1, u=−0.5  =−∫_(.5) ^(0.5) ((sin (π−2πu))/((0.5−u)(0.5+u)))  =∫_(−.5) ^(0.5) ((sin 2πu)/((0.5)^2 −u^2 )) dx=0 (∵ odd function of u)
01sin(πx)cos(πx)x(1x)=01sin2πxx(1x)x=0.5udx=du,x=0,u=0.5,x=1,u=0.5=.50.5sin(π2πu)(0.5u)(0.5+u)=.50.5sin2πu(0.5)2u2dx=0(oddfunctionofu)

Leave a Reply

Your email address will not be published. Required fields are marked *