Menu Close

a-b-c-gt-0-and-a-b-c-k-min-1-1-a-2-1-1-b-2-1-1-c-2-




Question Number 143591 by mathdanisur last updated on 16/Jun/21
a;b;c>0  and  a+b+c=k  min((1/(1+a^2 )) + (1/(1+b^2 )) + (1/(1+c^2 )))=?
$${a};{b};{c}>\mathrm{0}\:\:{and}\:\:{a}+{b}+{c}={k} \\ $$$$\boldsymbol{{min}}\left(\frac{\mathrm{1}}{\mathrm{1}+{a}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{1}+{b}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{1}+{c}^{\mathrm{2}} }\right)=? \\ $$
Answered by Olaf_Thorendsen last updated on 16/Jun/21
Let f(a,b,c) = (1/(1+a^2 ))+(1/(1+b^2 ))+(1/(1+c^2 ))  min(f(a,b,c)) = ?  By symmetry a = b = c = (k/3)  min(f(a,b,c)) = (3/(1+((k/3))^2 ))  min(f(a,b,c)) = ((27)/(9+k^2 ))
$$\mathrm{Let}\:{f}\left({a},{b},{c}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}+{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}+{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}+{c}^{\mathrm{2}} } \\ $$$${min}\left({f}\left({a},{b},{c}\right)\right)\:=\:? \\ $$$$\mathrm{By}\:\mathrm{symmetry}\:{a}\:=\:{b}\:=\:{c}\:=\:\frac{{k}}{\mathrm{3}} \\ $$$${min}\left({f}\left({a},{b},{c}\right)\right)\:=\:\frac{\mathrm{3}}{\mathrm{1}+\left(\frac{{k}}{\mathrm{3}}\right)^{\mathrm{2}} } \\ $$$${min}\left({f}\left({a},{b},{c}\right)\right)\:=\:\frac{\mathrm{27}}{\mathrm{9}+{k}^{\mathrm{2}} } \\ $$
Commented by mathdanisur last updated on 16/Jun/21
thanks Sir, there are also two  other roots..
$${thanks}\:{Sir},\:{there}\:{are}\:{also}\:{two} \\ $$$${other}\:{roots}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *