Menu Close

a-b-c-nonnegative-real-numbers-a-2-b-2-1-b-2-c-2-1-c-2-a-2-1-2-2-a-2-b-2-c-2-1-Find-all-triplets-a-b-c-so-that-inequality-ab




Question Number 69229 by naka3546 last updated on 21/Sep/19
a, b, c  ∈  nonnegative  real  numbers  (√(a^2  + b^2  + 1)) + (√(b^2  + c^2  + 1)) + (√(c^2  + a^2  + 1))  ≥  2 + (√(2(a^2  + b^2  + c^2 ) + 1))  Find  all  triplets (a, b, c)  so  that  inequality  above  hold .
$${a},\:{b},\:{c}\:\:\in\:\:{nonnegative}\:\:{real}\:\:{numbers} \\ $$$$\sqrt{{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:\mathrm{1}}\:+\:\sqrt{{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:+\:\mathrm{1}}\:+\:\sqrt{{c}^{\mathrm{2}} \:+\:{a}^{\mathrm{2}} \:+\:\mathrm{1}}\:\:\geqslant\:\:\mathrm{2}\:+\:\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \right)\:+\:\mathrm{1}} \\ $$$${Find}\:\:{all}\:\:{triplets}\:\left({a},\:{b},\:{c}\right)\:\:{so}\:\:{that}\:\:{inequality}\:\:{above}\:\:{hold}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *