Question Number 136783 by Abdoulaye last updated on 26/Mar/21
$${a},{b}\in{R} \\ $$$$\left({a}+{b}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{a}^{{k}} {b}^{{n}−{k}} \\ $$$${demontration}! \\ $$
Commented by mr W last updated on 26/Mar/21
$$\left({a}+{b}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{a}^{\mathrm{n}−\mathrm{k}} {b}^{{k}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{a}^{\mathrm{k}} {b}^{{n}−{k}} \\ $$
Commented by abdurehime last updated on 26/Mar/21
$${a},{b}\in{R} \\ $$$$\left({a}+{b}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{a}^{\mathrm{n}−\mathrm{k}} {b}^{{k}} \\ $$$${demontration}!\:\:\mathrm{this}\:\mathrm{the}\:\mathrm{correct}\:\mathrm{one} \\ $$$$\mathrm{also}\:\mathrm{i}\:\mathrm{want}\:\mathrm{to}\:\mathrm{see}\:\mathrm{the}\:\mathrm{proof} \\ $$
Answered by mr W last updated on 26/Mar/21
$${f}\left({x}\right)=\left(\mathrm{1}+{x}\right)^{{n}} \\ $$$${f}^{\left(\mathrm{1}\right)} \left({x}\right)={n}\left(\mathrm{1}+{x}\right)^{{n}−\mathrm{1}} \\ $$$${f}^{\left(\mathrm{2}\right)} \left({x}\right)={n}\left({n}−\mathrm{1}\right)\left(\mathrm{1}+{x}\right)^{{n}−\mathrm{2}} \\ $$$${f}^{\left({k}\right)} \left({x}\right)={n}\left({n}−\mathrm{1}\right)…\left({n}−{k}+\mathrm{1}\right)\left(\mathrm{1}+{x}\right)^{{n}−{k}} \\ $$$${f}^{\left({n}\right)} \left({x}\right)={n}\left({n}−\mathrm{1}\right)…\mathrm{2}×\mathrm{1} \\ $$$${f}^{\left({n}+…\right)} \left({x}\right)=\mathrm{0} \\ $$$${f}\left({x}\right)={f}\left(\mathrm{0}\right)+{f}^{\left(\mathrm{1}\right)} \left(\mathrm{0}\right){x}+{f}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+…+{f}^{\left({k}\right)} \left(\mathrm{0}\right)\frac{{x}^{{k}} }{{k}!}+…+{f}^{\left({n}\right)} \left({o}\right)\frac{{x}^{{n}} }{{n}!}+{f}^{\left({n}+\mathrm{1}\right)} \left(\mathrm{0}\right)\frac{{x}^{{n}+\mathrm{1}} }{\left({n}+\mathrm{1}\right)!}+… \\ $$$${f}\left({x}\right)=\mathrm{1}+{nx}+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}!}{x}^{\mathrm{2}} +…+\frac{{n}\left({n}−\mathrm{1}\right)…\left({n}−{k}+\mathrm{1}\right)}{{k}!}{x}^{{k}} +…+\frac{{n}!}{{n}!}{x}^{{n}} +\mathrm{0}×\frac{{x}^{{n}+\mathrm{1}} }{\left({n}+\mathrm{1}\right)!}+… \\ $$$${f}\left({x}\right)=\mathrm{1}+{nx}+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}!}{x}^{\mathrm{2}} +…+\frac{{n}\left({n}−\mathrm{1}\right)…\left({n}−{k}+\mathrm{1}\right)}{{k}!}{x}^{{k}} +…+\frac{{n}!}{{n}!}{x}^{{n}} \\ $$$${f}\left({x}\right)=\begin{pmatrix}{{n}}\\{\mathrm{0}}\end{pmatrix}{x}^{\mathrm{0}} +\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}{x}^{\mathrm{1}} +\begin{pmatrix}{{n}}\\{\mathrm{2}}\end{pmatrix}{x}^{\mathrm{2}} +…+\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{x}^{{k}} +…+\begin{pmatrix}{{n}}\\{{n}}\end{pmatrix}{x}^{{n}} \\ $$$${f}\left({x}\right)=\left(\mathrm{1}+{x}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{x}^{{k}} \\ $$$${a}^{{n}} \left(\mathrm{1}+{x}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{a}^{{n}} {x}^{{k}} \\ $$$${let}\:{x}=\frac{{b}}{{a}} \\ $$$${a}^{{n}} \left(\mathrm{1}+\frac{{b}}{{a}}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{a}^{{n}} \left(\frac{{b}}{{a}}\right)^{{k}} \\ $$$$\Rightarrow\left({a}+{b}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{a}^{{n}−{k}} {b}^{{k}} \\ $$$${or} \\ $$$${b}^{{n}} \left(\mathrm{1}+\frac{{a}}{{b}}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{b}^{{n}} \left(\frac{{a}}{{b}}\right)^{{k}} \\ $$$$\Rightarrow\left({a}+{b}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}{a}^{{k}} {b}^{{n}−{k}} \\ $$