Menu Close

a-b-R-ax-b-1-x-2-1-x-R-prove-a-2-b-1-




Question Number 139190 by mathdanisur last updated on 23/Apr/21
a;b∈R , ((∣ax+b∣)/(1+x^2 )) ≤ 1 , ∀x∈R  prove:  ∣a∣≤2 ; ∣b∣≤1
a;bR,ax+b1+x21,xRprove:a∣⩽2;b∣⩽1
Answered by mitica last updated on 24/Apr/21
x=0⇒∣b∣≤1  x=1⇒∣a+b∣≤2  x=−1⇒∣a−b∣≤2  ∣a∣=∣((2a)/2)∣=((∣a+b+a−b∣)/2)≤((∣a+b∣+∣a−b∣)/2)≤((2+2)/2)=2
x=0⇒∣b∣⩽1x=1⇒∣a+b∣⩽2x=1⇒∣ab∣⩽2a∣=∣2a2∣=a+b+ab2a+b+ab22+22=2
Commented by mathdanisur last updated on 24/Apr/21
thank you sir, but ∣b∣≤1? please
thankyousir,butb∣⩽1?please
Commented by mitica last updated on 24/Apr/21
x=0⇒((∣a∙0+b∣)/(0^2 +1))≤1⇒((∣b∣)/1)≤1⇒∣b∣≤1
x=0a0+b02+11b11⇒∣b∣⩽1
Answered by mr W last updated on 24/Apr/21
Commented by mr W last updated on 24/Apr/21
let′s generally look at the function  y=x^2 +bx+c  there are three cases.  case 1: y>0 for x∈R  x^2 +bx+c=0 has no real root, i.e.  Δ=b^2 −4c<0  case 2: y≥0 for x∈R  x^2 +bx+c=0 has one double real root, i.e.  Δ=b^2 −4c=0  case 3:  x^2 +bx+c=0 has two real rootx, i.e.  Δ=b^2 −4c>0  y>0 if x<x_1  or x>x_2   y<0 if x_1 <x<x_2   y=0 if x=x_1  or x_2     ⇒such that x^2 +bx+c≥0 for x∈R,  Δ=b^2 −4c≤0
letsgenerallylookatthefunctiony=x2+bx+ctherearethreecases.case1:y>0forxRx2+bx+c=0hasnorealroot,i.e.Δ=b24c<0case2:y0forxRx2+bx+c=0hasonedoublerealroot,i.e.Δ=b24c=0case3:x2+bx+c=0hastworealrootx,i.e.Δ=b24c>0y>0ifx<x1orx>x2y<0ifx1<x<x2y=0ifx=x1orx2suchthatx2+bx+c0forxR,Δ=b24c0
Commented by mr W last updated on 24/Apr/21
((∣ax+b∣)/(1+x^2 ))≤1 for x∈R  ⇒ −1≤((ax+b)/(1+x^2 ))≤1  ⇒ −1−x^2 ≤ax+b≤1+x^2     1) ax+b≤1+x^2   x^2 −ax+1−b≥0  Δ=a^2 +4(b−1)≤0   ...(i)  4(b−1)≤0  ⇒b≤1  2) −1−x^2 ≤ax+b  x^2 +ax+b+1≥0     Δ=a^2 −4(b+1)≤0   ...(ii)  4(b+1)≥a^2 ≥0  ⇒b≥−1  ⇒−1≤b≤1  ⇒∣b∣≤1  (i)+(ii):  2a^2 −4−4≤0  a^2 ≤4  ⇒∣a∣≤2
ax+b1+x21forxR1ax+b1+x211x2ax+b1+x21)ax+b1+x2x2ax+1b0Δ=a2+4(b1)0(i)4(b1)0b12)1x2ax+bx2+ax+b+10Δ=a24(b+1)0(ii)4(b+1)a20b11b1⇒∣b∣⩽1(i)+(ii):2a2440a24⇒∣a∣⩽2
Commented by mathdanisur last updated on 24/Apr/21
Perfect Sir thanks..  How can this be Sir pliase..  if: a;b∈R, ∣ax^3 +bx∣≤1, ∀∣x∣≤1  prov: ∣bx^3 +ax∣≤1, ∣3ax^2 +b∣≤9, ∀∣x∣≤1
PerfectSirthanks..HowcanthisbeSirpliase..if:a;bR,ax3+bx∣⩽1,x∣⩽1prov:bx3+ax∣⩽1,3ax2+b∣⩽9,x∣⩽1
Commented by mr W last updated on 24/Apr/21
please open a new thread for this   new question!
pleaseopenanewthreadforthisnewquestion!

Leave a Reply

Your email address will not be published. Required fields are marked *