Menu Close

A-B-R-f-1-0-0-1-f-x-2-dx-A-and-0-1-xf-x-dx-B-what-is-the-integral-value-of-0-1-xf-x-f-x-1-dx-by-using-trrms-of-A-and-B-




Question Number 138415 by tugu last updated on 13/Apr/21
A,B ∈R,  f(1)=0 , ∫_0 ^1 (f(x))^2 dx =A and ∫_0 ^1 xf(x)dx=B   what is the integral value of  ∫_0 ^1 xf(x)(f ′(x)−1)dx by using trrms of A and B ?
A,BR,f(1)=0,10(f(x))2dx=Aand10xf(x)dx=Bwhatistheintegralvalueof10xf(x)(f(x)1)dxbyusingtrrmsofAandB?
Answered by Ar Brandon last updated on 13/Apr/21
I=∫_0 ^1 xf(x)(f ′(x)−1)dx     =∫_0 ^1 xf(x)f ′(x)dx−∫_0 ^1 xf(x)dx     =[((x(f(x))^2 )/2)−(1/2)∫(f(x))^2 dx]_0 ^1 −B     =(((f(1))^2 )/2)−(1/2)∫_0 ^1 (f(x))^2 dx−B     =−(A/2)−B
I=01xf(x)(f(x)1)dx=01xf(x)f(x)dx01xf(x)dx=[x(f(x))2212(f(x))2dx]01B=(f(1))221201(f(x))2dxB=A2B

Leave a Reply

Your email address will not be published. Required fields are marked *