Menu Close

a-b-R-Given-a-3-b-3-ab-11-0-Show-that-7-3-lt-a-b-lt-2-




Question Number 132497 by mathocean1 last updated on 14/Feb/21
a, b ∈ R.  Given a^3 +b^3 −ab+11=0  Show that −(7/3)<a+b<−2
a,bR.Givena3+b3ab+11=0Showthat73<a+b<2
Answered by MJS_new last updated on 14/Feb/21
not true. i.e.:  a=−1∧b=−2 ⇒ a+b=−3
nottrue.i.e.:a=1b=2a+b=3
Answered by mr W last updated on 15/Feb/21
let s=a+b  s^3 −(3s+1)a(s−a)+11=0  (3s+1)a^2 −s(3s+1)a+s^3 +11=0  Δ=s^2 (3s+1)^2 −4(3s+1)(s^3 +11)≥0  (3s+1)(s^2 −s^3 −44)≥0  (3s+1)(s^3 −s^2 +44)≤0    3s+1=0  ⇒s=−(1/3)    s^3 −s^2 +44=0  let s=t+(1/3)  t^3 −(t/3)+((1186)/(27))=0  t=−((((593)/(27))+(√(((593^2 )/(27^2 ))−(1/9^3 )))))^(1/3) −((((593)/(27))−(√(((593^2 )/(27^2 ))−(1/9^3 )))))^(1/3)   s=(1/3)[1−((593+12(√(2442))))^(1/3) −((593−12(√(2442))))^(1/3) ]≈−3.2265    ⇒−3.2265≤s=a+b≤−(1/3)
lets=a+bs3(3s+1)a(sa)+11=0(3s+1)a2s(3s+1)a+s3+11=0Δ=s2(3s+1)24(3s+1)(s3+11)0(3s+1)(s2s344)0(3s+1)(s3s2+44)03s+1=0s=13s3s2+44=0lets=t+13t3t3+118627=0t=59327+593227219335932759322721933s=13[1593+12244235931224423]3.22653.2265s=a+b13

Leave a Reply

Your email address will not be published. Required fields are marked *