Menu Close

a-b-Z-b-2-a-2-2b-7a-4-a-b-




Question Number 9962 by konen last updated on 19/Jan/17
a,b ∈Z^+   b^2 −a^2 =2b+7a+4  ⇒ a+b=?
$$\mathrm{a},\mathrm{b}\:\in\mathrm{Z}^{+} \\ $$$$\mathrm{b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} =\mathrm{2b}+\mathrm{7a}+\mathrm{4} \\ $$$$\Rightarrow\:\mathrm{a}+\mathrm{b}=? \\ $$
Commented by prakash jain last updated on 19/Jan/17
b^2 −2b+1=a^2 +7a+5  (b−1)^2 =a^2 +7a+5  k=b−1  a^2 +7a+5−k^2 =0  a=((−7±(√(49−4(5−k^2 ))))/2)=((−7+(√(29+4k^2 )))/2)  29+4k^2   need be a whole square  k=7⇒29+4k^2 =225  k=7⇒b=8,a=4  a+b=12
$${b}^{\mathrm{2}} −\mathrm{2}{b}+\mathrm{1}={a}^{\mathrm{2}} +\mathrm{7}{a}+\mathrm{5} \\ $$$$\left({b}−\mathrm{1}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +\mathrm{7}{a}+\mathrm{5} \\ $$$${k}={b}−\mathrm{1} \\ $$$${a}^{\mathrm{2}} +\mathrm{7}{a}+\mathrm{5}−{k}^{\mathrm{2}} =\mathrm{0} \\ $$$${a}=\frac{−\mathrm{7}\pm\sqrt{\mathrm{49}−\mathrm{4}\left(\mathrm{5}−{k}^{\mathrm{2}} \right)}}{\mathrm{2}}=\frac{−\mathrm{7}+\sqrt{\mathrm{29}+\mathrm{4}{k}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$$\mathrm{29}+\mathrm{4}{k}^{\mathrm{2}} \:\:\mathrm{need}\:\mathrm{be}\:\mathrm{a}\:\mathrm{whole}\:\mathrm{square} \\ $$$${k}=\mathrm{7}\Rightarrow\mathrm{29}+\mathrm{4}{k}^{\mathrm{2}} =\mathrm{225} \\ $$$${k}=\mathrm{7}\Rightarrow{b}=\mathrm{8},{a}=\mathrm{4} \\ $$$${a}+{b}=\mathrm{12} \\ $$$$ \\ $$
Commented by prakash jain last updated on 19/Jan/17
(29+4k^2 )=(2n+1)^2   29+4k^2 =4n^2 +4n+1  7+k^2 =n^2 +n⇒k=n=7
$$\left(\mathrm{29}+\mathrm{4}{k}^{\mathrm{2}} \right)=\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{29}+\mathrm{4}{k}^{\mathrm{2}} =\mathrm{4}{n}^{\mathrm{2}} +\mathrm{4}{n}+\mathrm{1} \\ $$$$\mathrm{7}+{k}^{\mathrm{2}} ={n}^{\mathrm{2}} +{n}\Rightarrow{k}={n}=\mathrm{7} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *