Question Number 143889 by mnjuly1970 last updated on 19/Jun/21

Answered by Olaf_Thorendsen last updated on 19/Jun/21
![Φ = ∫_0 ^1 ((ln(x).ln(1+x))/(1−x)) dx Let u = 1−x Φ = ∫_0 ^1 ((ln(1−u).ln(2−u))/u) du Φ = ∫_0 ^1 ((ln(2−u))/u)(−Σ_(n=0) ^∞ (u^(n+1) /(n+1))) du Φ = −∫_0 ^1 ln(2−u)Σ_(n=0) ^∞ (u^n /(n+1)) du Φ = −[ln(2−u)Σ_(n=0) ^∞ (u^(n+1) /((n+1)^2 ))]_0 ^1 −∫_0 ^1 (1/(2−u)).Σ_(n=0) ^∞ (u^(n+1) /((n+1)^2 )) du Φ = Σ_(n=0() ^∞ (1/(n+1)^2 ))∫_0 ^1 (u^(n+1) /(2−u)) du Let I_n = ∫_0 ^1 (u^n /(2−u)) du 2I_n −I_(n+1) = ∫_0 ^1 ((2u^n −u^(n+1) )/(2−u)) du 2I_n −I_(n+1) = ∫_0 ^1 u^n du 2I_n −I_(n+1) = (1/(n+1)) I_(n+1) = 2I_n −(1/(n+1)) I_(n+1) = 2(2I_(n−1) −(1/n))−(1/(n+1)) I_(n+1) = 2^2 I_(n−1) −(2/n)−(1/(n+1)) I_(n+1) = 2^2 I_(n−1) −(2/n)−(1/(n+1)) I_(n+1) = 2^3 I_(n−2) −(2^2 /(n−1))−(2/n)−(1/(n+1)) ... I_(n+1) = 2^(n+1) I_0 −Σ_(k=1) ^(n+1) (2^(n+1−k) /k) I_0 = ∫_0 ^1 (u^0 /(2−u)) du = [−ln∣2−u∣]_0 ^1 = ln2 I_(n+1) = 2^(n+1) ln2−Σ_(k=1) ^(n+1) (2^(n+1−k) /k) Φ = Σ_(n=0() ^∞ (I_(n+1) /(n+1)^2 )) Φ = Σ_(n=0() ^∞ (1/(n+1)^2 ))(2^(n+1) ln2−Σ_(k=1) ^(n+1) (2^(n+1−k) /k)) Φ = Σ_(n=0() ^∞ (2^(n+1) /(n+1)^2 ))(ln2−Σ_(k=1) ^(n+1) (2^(−k) /k)) Σ_(k=1) ^n (1/(2^k k)) = ln2−((n−1)/n).((LerchPhi((1/2),1,n))/2^(n+1) ) Φ = (1/2)Σ_(n=0) ^∞ (n.((LerchPhi((1/2),1,n+1))/((n+1)^3 ))) ... Sorry, I tried to solve but I′m lost...](https://www.tinkutara.com/question/Q143943.png)
Commented by mnjuly1970 last updated on 20/Jun/21

Answered by mnjuly1970 last updated on 20/Jun/21

Commented by Dwaipayan Shikari last updated on 20/Jun/21

Commented by mnjuly1970 last updated on 20/Jun/21
