Menu Close

A-Challanging-Integral-0-1-log-x-log-1-x-1-x-dx-




Question Number 143889 by mnjuly1970 last updated on 19/Jun/21
        A  Challanging  Integral:                    Φ = ∫_0 ^( 1)  ((log(x).log(1+x))/(1−x))dx
AChallangingIntegral:Φ=01log(x).log(1+x)1xdx
Answered by Olaf_Thorendsen last updated on 19/Jun/21
  Φ = ∫_0 ^1 ((ln(x).ln(1+x))/(1−x)) dx  Let u = 1−x  Φ = ∫_0 ^1 ((ln(1−u).ln(2−u))/u) du  Φ = ∫_0 ^1 ((ln(2−u))/u)(−Σ_(n=0) ^∞ (u^(n+1) /(n+1))) du  Φ = −∫_0 ^1 ln(2−u)Σ_(n=0) ^∞ (u^n /(n+1)) du  Φ = −[ln(2−u)Σ_(n=0) ^∞ (u^(n+1) /((n+1)^2 ))]_0 ^1   −∫_0 ^1 (1/(2−u)).Σ_(n=0) ^∞ (u^(n+1) /((n+1)^2 )) du  Φ = Σ_(n=0() ^∞ (1/(n+1)^2 ))∫_0 ^1 (u^(n+1) /(2−u)) du  Let I_n  = ∫_0 ^1 (u^n /(2−u)) du  2I_n −I_(n+1)  = ∫_0 ^1 ((2u^n −u^(n+1) )/(2−u)) du  2I_n −I_(n+1)  = ∫_0 ^1 u^n  du  2I_n −I_(n+1)  = (1/(n+1))  I_(n+1)  = 2I_n −(1/(n+1))  I_(n+1)  = 2(2I_(n−1) −(1/n))−(1/(n+1))  I_(n+1)  = 2^2 I_(n−1) −(2/n)−(1/(n+1))  I_(n+1)  = 2^2 I_(n−1) −(2/n)−(1/(n+1))  I_(n+1)  = 2^3 I_(n−2) −(2^2 /(n−1))−(2/n)−(1/(n+1))  ...  I_(n+1)  = 2^(n+1) I_0 −Σ_(k=1) ^(n+1) (2^(n+1−k) /k)  I_0  = ∫_0 ^1 (u^0 /(2−u)) du = [−ln∣2−u∣]_0 ^1  = ln2  I_(n+1)  = 2^(n+1) ln2−Σ_(k=1) ^(n+1) (2^(n+1−k) /k)  Φ = Σ_(n=0() ^∞ (I_(n+1) /(n+1)^2 ))  Φ = Σ_(n=0() ^∞ (1/(n+1)^2 ))(2^(n+1) ln2−Σ_(k=1) ^(n+1) (2^(n+1−k) /k))  Φ = Σ_(n=0() ^∞ (2^(n+1) /(n+1)^2 ))(ln2−Σ_(k=1) ^(n+1) (2^(−k) /k))  Σ_(k=1) ^n (1/(2^k k)) = ln2−((n−1)/n).((LerchPhi((1/2),1,n))/2^(n+1) )  Φ = (1/2)Σ_(n=0) ^∞ (n.((LerchPhi((1/2),1,n+1))/((n+1)^3 )))  ...  Sorry, I tried to solve but I′m lost...
Φ=01ln(x).ln(1+x)1xdxLetu=1xΦ=01ln(1u).ln(2u)uduΦ=01ln(2u)u(n=0un+1n+1)duΦ=01ln(2u)n=0unn+1duΦ=[ln(2u)n=0un+1(n+1)2]010112u.n=0un+1(n+1)2duΦ=n=0(1n+1)201un+12uduLetIn=01un2udu2InIn+1=012unun+12udu2InIn+1=01undu2InIn+1=1n+1In+1=2In1n+1In+1=2(2In11n)1n+1In+1=22In12n1n+1In+1=22In12n1n+1In+1=23In222n12n1n+1In+1=2n+1I0n+1k=12n+1kkI0=01u02udu=[ln2u]01=ln2In+1=2n+1ln2n+1k=12n+1kkΦ=n=0(In+1n+1)2Φ=n=0(1n+1)2(2n+1ln2n+1k=12n+1kk)Φ=n=0(2n+1n+1)2(ln2n+1k=12kk)nk=112kk=ln2n1n.LerchPhi(12,1,n)2n+1Φ=12n=0(n.LerchPhi(12,1,n+1)(n+1)3)Sorry,ItriedtosolvebutImlost
Commented by mnjuly1970 last updated on 20/Jun/21
 thanks alot mr olaf ..
thanksalotmrolaf..
Answered by mnjuly1970 last updated on 20/Jun/21
    Φ:=∫_0 ^( 1) ((log(1−x)log(2−x))/x)dx            :=∫_0 ^( 1) ((log(1−x){log(2)+log(1−(x/2))})/x)dx     :=−log(2)(π^2 /6) −Σ_(n=1) ^∞ (1/2^n )∫_0 ^( 1) x^(n−1) log(1−x)dx     :=−log(2).(π^2 /2)+Σ_(n=1) ^∞ (H_n /(n^2 2^n ))     :=−log(2).(π^( 2) /6) +ζ(3)−(π^2 /(12)) log(2)    :=((−π^( 2) )/4)log(2)+ζ(3) ...
Φ:=01log(1x)log(2x)xdx:=01log(1x){log(2)+log(1x2)}xdx:=log(2)π26n=112n01xn1log(1x)dx:=log(2).π22+n=1Hnn22n:=log(2).π26+ζ(3)π212log(2):=π24log(2)+ζ(3)
Commented by Dwaipayan Shikari last updated on 20/Jun/21
Nice sir!
Nicesir!
Commented by mnjuly1970 last updated on 20/Jun/21
  thank you so much...
thankyousomuch

Leave a Reply

Your email address will not be published. Required fields are marked *