Menu Close

A-chord-divides-the-circle-in-two-segments-having-areas-s-1-and-s-2-If-diameter-perpendicular-to-this-chord-is-cut-into-1-3-by-the-chord-what-is-s-1-s-2-




Question Number 3808 by Rasheed Soomro last updated on 21/Dec/15
A chord divides  the circle in two  segments,having areas s_1  and  s_2 .  If diameter, perpendicular to this  chord is cut into 1:3 by the chord ,what is s_1 :s_2  ?
Achorddividesthecircleintwosegments,havingareass1ands2.Ifdiameter,perpendiculartothischordiscutinto1:3bythechord,whatiss1:s2?
Commented by Rasheed Soomro last updated on 21/Dec/15
Let AB is a chord and CD (⊥AB) is  a diameter.  Let AB cuts CD at point O  If CO:OD=1:3 , what is s_1 :s_2   s_1  and s_2  are areas of two segments of the  circle produced by chord AB.
LetABisachordandCD(AB)isadiameter.LetABcutsCDatpointOIfCO:OD=1:3,whatiss1:s2s1ands2areareasoftwosegmentsofthecircleproducedbychordAB.
Answered by Yozzii last updated on 21/Dec/15
(Integral Calculus can alternatively  be used to find the value of (s_1 /s_2 ).)  Draw a circle with diameter length d and   centre Q. A diameter of the circle normally  cuts a chord AB on the circle such that  d is partitioned in the ratio 1:3. Let  LF  be such a diameter and D be the   point of intersection of the chord AB  and diameter LF. We thus have   ∣LD∣=3a and ∣DF∣=a (a>0) so that DF:LD=1:3.  Therefore, d=3a+a=4a⇒ radius r=2a.  Complete the isosceles triangle △AQB  and let ∠AQB=θ. The area A_(1 ) of the sector AB  of the circle is then   A_1 =(1/2)r^2 θ=(1/2)×4a^2 θ=2a^2 θ.  The area of △AQB,denoted by A_2 , is given by  A_2 =(1/2)2a×2a×sinθ=2a^2 sinθ.  Now, let s_1  be the area between the chord  AB and the arc AB.   ⇒s_1 =A_1 −A_2 =2a^2 (θ−sinθ)  Hence, the area of the other segment  of the circle is s_2 =πr^2 −s_1 .  s_2 =4πa^2 −2a^2 (θ−sinθ)  s_2 =2a^2 (2π+sinθ−θ)  Therefore, (s_1 /s_2 )=((θ−sinθ)/(2π+sinθ−θ)).  Returning to △AQB, we can yield  a right−angled triangle △AQD  with ∠AQD=(1/2)∠AQB=(θ/2)  and ∠QDA=(π/2).  We then have cos(θ/2)=((QD)/(AQ))=(a/(2a))=(1/2)  ⇒(θ/2)=(π/3)⇒θ=((2π)/3).  ∴ (s_1 /s_2 )=((((2π)/3)−sin((2π)/3))/(2π+sin((2π)/3)−((2π)/3)))=((((2π)/3)−((√3)/2))/(2π+((√3)/2)−((2π)/3)))  (s_1 /s_2 )=((4π−3(√3))/(8π+3(√3)))
(IntegralCalculuscanalternativelybeusedtofindthevalueofs1s2.)DrawacirclewithdiameterlengthdandcentreQ.AdiameterofthecirclenormallycutsachordABonthecirclesuchthatdispartitionedintheratio1:3.LetLFbesuchadiameterandDbethepointofintersectionofthechordABanddiameterLF.WethushaveLD∣=3aandDF∣=a(a>0)sothatDF:LD=1:3.Therefore,d=3a+a=4aradiusr=2a.CompletetheisoscelestriangleAQBandletAQB=θ.TheareaA1ofthesectorABofthecircleisthenA1=12r2θ=12×4a2θ=2a2θ.TheareaofAQB,denotedbyA2,isgivenbyA2=122a×2a×sinθ=2a2sinθ.Now,lets1betheareabetweenthechordABandthearcAB.s1=A1A2=2a2(θsinθ)Hence,theareaoftheothersegmentofthecircleiss2=πr2s1.s2=4πa22a2(θsinθ)s2=2a2(2π+sinθθ)Therefore,s1s2=θsinθ2π+sinθθ.ReturningtoAQB,wecanyieldarightangledtriangleAQDwithAQD=12AQB=θ2andQDA=π2.Wethenhavecosθ2=QDAQ=a2a=12θ2=π3θ=2π3.s1s2=2π3sin2π32π+sin2π32π3=2π3322π+322π3s1s2=4π338π+33
Commented by Rasheed Soomro last updated on 21/Dec/15
′′....A diameter of the circle normally  cuts a chord AB on the circle_(−)  such that  d is partitioned in the ratio 1:3....′′  What do you mean by this?
.AdiameterofthecirclenormallycutsachordABonthecirclesuchthatdispartitionedintheratio1:3.Whatdoyoumeanbythis?
Commented by Yozzii last updated on 21/Dec/15
normally⇒perpendicularly (in math terms)
normallyperpendicularly(inmathterms)
Commented by Yozzii last updated on 21/Dec/15
  The diameter cuts the chord at 90°  with the chord divinding the length of  the diameter in the ratio 1:3.
Thediametercutsthechordat90°withthechorddivindingthelengthofthediameterintheratio1:3.
Commented by Yozzii last updated on 21/Dec/15
The question hadn′t specified whether  s_1 >s_2  or s_2 >s_1  so truly (s_1 /s_2 ) can take  two values that are reciprocals  of each other.
Thequestionhadntspecifiedwhethers1>s2ors2>s1sotrulys1s2cantaketwovaluesthatarereciprocalsofeachother.
Commented by Rasheed Soomro last updated on 22/Dec/15
Thanks! Misunderstanding in understanding  language.I got ′normally′  in normal language,  not as mathematical term.
Thanks!Misunderstandinginunderstandinglanguage.Igot\boldsymbolnormallyinnormallanguage,notasmathematicalterm.
Commented by Rasheed Soomro last updated on 21/Dec/15
G^(O^(  V) O) D Approach!
GOVODApproach!
Answered by Yozzii last updated on 21/Dec/15
(Integral calculus method based on  initial information from first answer.)    Define a circle C with equation   x^2 +y^2 =4a^2 , a>0.  For C ,let s_1  be the area between the   chord AB and the arc AB. We can let  the diameter normal to AB be concurrent  with the x−axis.  ∴ s_1 =∫_a ^(2a) ydx  s_1 =∫_a ^(2a) (√(4a^2 −x^2 ))dx  Let x=2asinθ⇒dx=2acosθdθ  and (√(4a^2 −x^2 ))=2acosθ.  At x=a⇒sinθ=1/2⇒θ=(π/6).  At x=2a⇒sinθ=1⇒θ=π/2.  ∴s_1 =2∫_(π/6) ^(π/2) 4a^2 cos^2 θdθ  s_1 =4a^2 ∫_(π/6) ^(π/2) (1+cos2θ)dθ  s_1 =4a^2 (θ+(1/2)sin2θ)∣_(π/6) ^(π/2)   s_1 =4a^2 ((π/2)−(π/6)+(1/2)sinπ−(1/2)sin(π/3))  s_1 =4a^2 ((π/3)−((√3)/4))  s_1 =(a^2 /3)(4π−3(√3))  The area s_2  of the other segment is   given by s_2 =πr^2 −s_1 .  ∴ s_2 =4πa^2 −4a^2 ((4π−3(√3))/(12))  s_2 =4a^2 (π−((4π−3(√3))/(12)))  s_2 =4a^2 (((12π−4π+3(√3))/(12)))  s_2 =(a^2 /3)(8π+3(√3))  ∴ (s_1 /s_2 )=((4π−3(√3))/(8π+3(√3)))
(Integralcalculusmethodbasedoninitialinformationfromfirstanswer.)DefineacircleCwithequationx2+y2=4a2,a>0.ForC,lets1betheareabetweenthechordABandthearcAB.WecanletthediameternormaltoABbeconcurrentwiththexaxis.s1=a2aydxs1=a2a4a2x2dxLetx=2asinθdx=2acosθdθand4a2x2=2acosθ.Atx=asinθ=1/2θ=π6.Atx=2asinθ=1θ=π/2.s1=2π/6π/24a2cos2θdθs1=4a2π/6π/2(1+cos2θ)dθs1=4a2(θ+12sin2θ)π/6π/2s1=4a2(π2π6+12sinπ12sinπ3)s1=4a2(π334)s1=a23(4π33)Theareas2oftheothersegmentisgivenbys2=πr2s1.s2=4πa24a24π3312s2=4a2(π4π3312)s2=4a2(12π4π+3312)s2=a23(8π+33)s1s2=4π338π+33
Commented by Rasheed Soomro last updated on 21/Dec/15
 AnOther     G        D^( O^( V) O)    Approach!
AnO\boldsymboltherGDOVOApproach!

Leave a Reply

Your email address will not be published. Required fields are marked *