Menu Close

A-circle-of-radius-r-has-a-point-O-as-its-centre-Points-A-and-B-are-points-on-the-circumference-For-OAB-OA-OB-r-AB-d-AOB-What-is-r-d-




Question Number 6758 by FilupSmith last updated on 23/Jul/16
A circle of radius r has a point O as its  centre. Points A and B are points on the  circumference.    For △OAB, OA^(−) =OB^(−) =r, AB^(−) =d, ∠AOB=θ.  What is (r/d)?
AcircleofradiusrhasapointOasitscentre.PointsAandBarepointsonthecircumference.ForOAB,OA=OB=r,AB=d,AOB=θ.Whatisrd?
Commented by FilupSmith last updated on 23/Jul/16
I′ve used the cosine rule and pythagorus  and have gotten two different results for  the variable d.
Iveusedthecosineruleandpythagorusandhavegottentwodifferentresultsforthevariabled.
Commented by Rasheed Soomro last updated on 23/Jul/16
By cosine law  d^( 2) =r^2 +r^2 −2r^2 coθ=2r^2 (1−cosθ)  (r^2 /d^( 2) )=(1/(2(1−cosθ)))  (r/d)=+(√(1/(2(1−cosθ))))   [Since  r,d>0 ,  (r/d)>0]        =(1/( (√(2(1−cosθ)))))........................A  −−−−−−−−−  By Pythagorus theorm  sin(θ/2)=((d/2)/r)=(d/(2r))  (d/r)=2sin(θ/2)  But  sin(θ/2)=±(√((1−cosθ)/2))  Hence   (d/r)=2(+(√((1−cosθ)/2)))  [Since  r,d>0 ,  (r/d)>0]              (r/d)=(1/2)(((√2)/( (√(1−cosθ)))))=(1/( (√2)))((1/( (√(1−cosθ)))))                     =(1/( (√(2(1−cosθ))))).......................B  Both results are same.
Bycosinelawd2=r2+r22r2coθ=2r2(1cosθ)r2d2=12(1cosθ)rd=+12(1cosθ)[Sincer,d>0,rd>0]=12(1cosθ)AByPythagorustheormsinθ2=d/2r=d2rdr=2sinθ2Butsinθ2=±1cosθ2Hencedr=2(+1cosθ2)[Sincer,d>0,rd>0]rd=12(21cosθ)=12(11cosθ)=12(1cosθ)..BBothresultsaresame.
Commented by FilupSmith last updated on 24/Jul/16
Thank you! I failed to realise that  (d/r)=2sin((θ/2))
Thankyou!Ifailedtorealisethatdr=2sin(θ2)
Commented by sandy_suhendra last updated on 25/Jul/16
(r/d) = (1/( (√(2 (1−cos θ)))))   (d/r) = (√(2 (1−cos θ)))    ⇒ 1−cos θ = 2 sin^2  ((θ/2))  (d/r) = (√(4 sin^2  ((θ/2))))  = 2 sin ((θ/2))
rd=12(1cosθ)dr=2(1cosθ)1cosθ=2sin2(θ2)dr=4sin2(θ2)=2sin(θ2)

Leave a Reply

Your email address will not be published. Required fields are marked *