Menu Close

A-closed-cylindrical-can-be-is-to-hold-1-liters-of-liquid-How-should-we-choose-the-height-and-radius-to-minimize-the-amount-of-material-needed-to-manufacture-the-can-




Question Number 141368 by bemath last updated on 18/May/21
A closed cylindrical can be is to hold  1 liters of liquid . How should we   choose the height and radius   to minimize the amount of  material needed to manufacture  the can ?
$${A}\:{closed}\:{cylindrical}\:{can}\:{be}\:{is}\:{to}\:{hold} \\ $$$$\mathrm{1}\:{liters}\:{of}\:{liquid}\:.\:{How}\:{should}\:{we}\: \\ $$$${choose}\:{the}\:{height}\:{and}\:{radius}\: \\ $$$${to}\:{minimize}\:{the}\:{amount}\:{of} \\ $$$${material}\:{needed}\:{to}\:{manufacture} \\ $$$${the}\:{can}\:?\: \\ $$
Answered by TheSupreme last updated on 18/May/21
you have to minimize  S=2πR^2 +πRH  under the constrain  V=πR^2 H=1lt  H=(V/(πR^2 ))  S=2πR^2 +(V/R)  min(S)  (∂S/∂R)=4πR−(V/R^2 )=0 → R=^3 (√(V/(4π)))  R=4.30 cm  H=17.21 cm
$${you}\:{have}\:{to}\:{minimize} \\ $$$${S}=\mathrm{2}\pi{R}^{\mathrm{2}} +\pi{RH} \\ $$$${under}\:{the}\:{constrain} \\ $$$${V}=\pi{R}^{\mathrm{2}} {H}=\mathrm{1}{lt} \\ $$$${H}=\frac{{V}}{\pi{R}^{\mathrm{2}} } \\ $$$${S}=\mathrm{2}\pi{R}^{\mathrm{2}} +\frac{{V}}{{R}} \\ $$$${min}\left({S}\right) \\ $$$$\frac{\partial{S}}{\partial{R}}=\mathrm{4}\pi{R}−\frac{{V}}{{R}^{\mathrm{2}} }=\mathrm{0}\:\rightarrow\:{R}=^{\mathrm{3}} \sqrt{\frac{{V}}{\mathrm{4}\pi}} \\ $$$${R}=\mathrm{4}.\mathrm{30}\:{cm} \\ $$$${H}=\mathrm{17}.\mathrm{21}\:{cm} \\ $$$$ \\ $$
Commented by iloveisrael last updated on 18/May/21
r ≈ 5.4 cm
$${r}\:\approx\:\mathrm{5}.\mathrm{4}\:{cm} \\ $$
Answered by iloveisrael last updated on 18/May/21

Leave a Reply

Your email address will not be published. Required fields are marked *