Menu Close

A-convex-lens-of-focal-length-10cm-is-used-to-form-a-real-image-which-is-half-the-size-of-the-object-how-far-from-the-object-is-the-image-




Question Number 132991 by aurpeyz last updated on 17/Feb/21
A convex lens of focal length 10cm  is used to form a real image which is  half the size of the object. how far  from the object is the image???
$${A}\:{convex}\:{lens}\:{of}\:{focal}\:{length}\:\mathrm{10}{cm} \\ $$$${is}\:{used}\:{to}\:{form}\:{a}\:{real}\:{image}\:{which}\:{is} \\ $$$${half}\:{the}\:{size}\:{of}\:{the}\:{object}.\:{how}\:{far} \\ $$$${from}\:{the}\:{object}\:{is}\:{the}\:{image}??? \\ $$
Commented by aurpeyz last updated on 17/Feb/21
pls help me
$${pls}\:{help}\:{me} \\ $$
Answered by mr W last updated on 17/Feb/21
Commented by mr W last updated on 17/Feb/21
u=−2v  −(1/u)+(1/v)=(1/f)  −(1/(−2v))+(1/v)=(1/f)  (3/(2v))=(1/f)  ⇒v=((3f)/2)=15cm  ⇒u=−3f=−30 cm    distance object from image  =30+15=45 cm
$${u}=−\mathrm{2}{v} \\ $$$$−\frac{\mathrm{1}}{{u}}+\frac{\mathrm{1}}{{v}}=\frac{\mathrm{1}}{{f}} \\ $$$$−\frac{\mathrm{1}}{−\mathrm{2}{v}}+\frac{\mathrm{1}}{{v}}=\frac{\mathrm{1}}{{f}} \\ $$$$\frac{\mathrm{3}}{\mathrm{2}{v}}=\frac{\mathrm{1}}{{f}} \\ $$$$\Rightarrow{v}=\frac{\mathrm{3}{f}}{\mathrm{2}}=\mathrm{15}{cm} \\ $$$$\Rightarrow{u}=−\mathrm{3}{f}=−\mathrm{30}\:{cm} \\ $$$$ \\ $$$${distance}\:{object}\:{from}\:{image} \\ $$$$=\mathrm{30}+\mathrm{15}=\mathrm{45}\:{cm} \\ $$
Commented by aurpeyz last updated on 17/Feb/21
m=(1/2)=((−v)/u)≫u=−2v  f=+10cm  (1/(10))=(1/(−2v))+(1/v)⇒v=5cm..u=10cm  v+u=15cm  is it right?
$${m}=\frac{\mathrm{1}}{\mathrm{2}}=\frac{−{v}}{{u}}\gg{u}=−\mathrm{2}{v} \\ $$$${f}=+\mathrm{10}{cm} \\ $$$$\frac{\mathrm{1}}{\mathrm{10}}=\frac{\mathrm{1}}{−\mathrm{2}{v}}+\frac{\mathrm{1}}{{v}}\Rightarrow{v}=\mathrm{5}{cm}..{u}=\mathrm{10}{cm} \\ $$$${v}+{u}=\mathrm{15}{cm} \\ $$$${is}\:{it}\:{right}? \\ $$
Commented by aurpeyz last updated on 17/Feb/21
pls why does the formula(line 2)  starts with −ve?
$${pls}\:{why}\:{does}\:{the}\:{formula}\left({line}\:\mathrm{2}\right) \\ $$$${starts}\:{with}\:−{ve}? \\ $$
Commented by mr W last updated on 17/Feb/21
i can′t and don′t want to teach you  elementary things. if you have  problems to remember the formula  and the corresponding sign  convention, you should understand  the physics itself as the picture  shows. let′s forget the formula and  sign convention, we take f, u, v all  as positive. what can we get from  the picture above? we get:  ((A′B′)/(AB))=(1/2), since image=(1/2) object size  ((F_2 B)/(OF_2 ))=((A′B′)/(OC))=((A′B′)/(AB))=(1/2)  ⇒((v−f)/f)=(1/2)   ...(i)  ⇒v=((3f)/2)=15 cm    ((OB′)/(OB))=((A′B′)/(AB))=(1/2)  ⇒(v/u)=(1/2)   ...(ii)  ⇒u=2v=3f=30 cm
$${i}\:{can}'{t}\:{and}\:{don}'{t}\:{want}\:{to}\:{teach}\:{you} \\ $$$${elementary}\:{things}.\:{if}\:{you}\:{have} \\ $$$${problems}\:{to}\:{remember}\:{the}\:{formula} \\ $$$${and}\:{the}\:{corresponding}\:{sign} \\ $$$${convention},\:{you}\:{should}\:{understand} \\ $$$${the}\:{physics}\:{itself}\:{as}\:{the}\:{picture} \\ $$$${shows}.\:{let}'{s}\:{forget}\:{the}\:{formula}\:{and} \\ $$$${sign}\:{convention},\:{we}\:{take}\:{f},\:{u},\:{v}\:{all} \\ $$$${as}\:{positive}.\:{what}\:{can}\:{we}\:{get}\:{from} \\ $$$${the}\:{picture}\:{above}?\:{we}\:{get}: \\ $$$$\frac{{A}'{B}'}{{AB}}=\frac{\mathrm{1}}{\mathrm{2}},\:{since}\:{image}=\frac{\mathrm{1}}{\mathrm{2}}\:{object}\:{size} \\ $$$$\frac{{F}_{\mathrm{2}} {B}}{{OF}_{\mathrm{2}} }=\frac{{A}'{B}'}{{OC}}=\frac{{A}'{B}'}{{AB}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{{v}−{f}}{{f}}=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:…\left({i}\right) \\ $$$$\Rightarrow{v}=\frac{\mathrm{3}{f}}{\mathrm{2}}=\mathrm{15}\:{cm} \\ $$$$ \\ $$$$\frac{{OB}'}{{OB}}=\frac{{A}'{B}'}{{AB}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{{v}}{{u}}=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:…\left({ii}\right) \\ $$$$\Rightarrow{u}=\mathrm{2}{v}=\mathrm{3}{f}=\mathrm{30}\:{cm} \\ $$
Commented by aurpeyz last updated on 18/Feb/21
thank you sir
$${thank}\:{you}\:{sir} \\ $$
Commented by mr W last updated on 18/Feb/21
Commented by aurpeyz last updated on 18/Feb/21
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *