A-delegation-of-4-people-is-to-be-selected-from-5-women-and-6-men-Find-the-number-of-possible-delegations-if-a-there-are-no-restrictions-b-there-is-at-least-1-woman-c-there-are-at-least-2-w Tinku Tara June 3, 2023 Permutation and Combination 0 Comments FacebookTweetPin Question Number 5280 by Rasheed Soomro last updated on 04/May/16 Adelegationof4peopleistobeselectedfrom5womenand6men.Findthenumberofpossibledelegationsif(a)therearenorestrictions,(b)thereisatleast1woman,(c)thereareatleast2women.Oneofthemencannotgetalongwithoneofthewomen.Findthenumberofdelegationswhichincludethisparticularmanorwoman,butnotboth. Answered by Yozzii last updated on 04/May/16 (a)no.ofways=(5+64)=(114)=330(b)no.ofways=totalno.ofpossiblecombinations−no.ofgroupswithonlymen=(5+64)−(64)=315Settheoretically,ifweknowthecardinalityofthefiniteuniversalsetUandthecardinalityofoneoftwodisjointsetsAandB,andU=A∪B,then∣A∣+∣B∣=∣U∣.ThissituationhasU=allpossibledelegationsA=delegationswithonlymen,B=delegationswithatleastonewoman.⇒∣B∣=∣U∣−∣A∣.(c)Wecansubtractfromthetotalnumberofpossiblecombinationsthosecombinationsthatareallmenandthosecombinationsthatinclude3menand1woman.BytheAndcountingprinciple,no.ofcombinationsof3menand1womanisequalto(63)×(51).⇒no.ofwaysrequired=(5+64)−{(64)+(63)×(51)}=315−100=215(d)no.ofways=(11−23)+(11−23)=2(93)=168 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 3x-i-2x-y-dx-Next Next post: Question-136355 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.