Menu Close

a-function-f-is-defined-by-f-x-x-3-x-1-x-not-equal-to-1-determine-whether-f-is-bijective-that-is-both-one-to-one-and-onto-




Question Number 10741 by okhema last updated on 24/Feb/17
a function f is defined by f(x)= ((x+3)/(x−1)), x not equal to 1.determine whether f is bijective,that is,both one to one and onto
$${a}\:{function}\:{f}\:{is}\:{defined}\:{by}\:{f}\left({x}\right)=\:\frac{{x}+\mathrm{3}}{{x}−\mathrm{1}},\:{x}\:{not}\:{equal}\:{to}\:\mathrm{1}.{determine}\:{whether}\:{f}\:{is}\:{bijective},{that}\:{is},{both}\:{one}\:{to}\:{one}\:{and}\:{onto} \\ $$$$ \\ $$
Answered by mrW1 last updated on 24/Feb/17
f(x)= ((x+3)/(x−1))=y  x+3=yx−y  x(y−1)=3+y  x=((y+3)/(y−1))  ⇒f(x) is bijective.
$${f}\left({x}\right)=\:\frac{{x}+\mathrm{3}}{{x}−\mathrm{1}}={y} \\ $$$${x}+\mathrm{3}={yx}−{y} \\ $$$${x}\left({y}−\mathrm{1}\right)=\mathrm{3}+{y} \\ $$$${x}=\frac{{y}+\mathrm{3}}{{y}−\mathrm{1}} \\ $$$$\Rightarrow{f}\left({x}\right)\:{is}\:{bijective}. \\ $$
Commented by okhema last updated on 24/Feb/17
yes thats the working out but from your answer  how could you tell thats its bijective
$${yes}\:{thats}\:{the}\:{working}\:{out}\:{but}\:{from}\:{your}\:{answer} \\ $$$${how}\:{could}\:{you}\:{tell}\:{thats}\:{its}\:{bijective} \\ $$
Commented by mrW1 last updated on 24/Feb/17
for each x we get an unique y .  it shows for each y we get also an  unique x.  thus the function is bijective.
$${for}\:{each}\:{x}\:{we}\:{get}\:{an}\:{unique}\:{y}\:. \\ $$$${it}\:{shows}\:{for}\:{each}\:{y}\:{we}\:{get}\:{also}\:{an} \\ $$$${unique}\:{x}. \\ $$$${thus}\:{the}\:{function}\:{is}\:{bijective}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *