Menu Close

A-geometric-sequence-with-n-terms-a-1-a-2-a-3-a-n-which-has-a-1-a-n-3-If-the-product-of-all-n-terms-a-1-a-2-a-3-a-n-59049-Determine-the-value-of-n-




Question Number 11633 by Joel576 last updated on 29/Mar/17
A geometric sequence with n terms   a_1 , a_2 , a_3 , ..., a_n  which has a_1  . a_n  = 3  If the product of all n terms = a_1 a_2 a_3 ...a_n = 59049  Determine the value of n
Ageometricsequencewithntermsa1,a2,a3,,anwhichhasa1.an=3Iftheproductofallnterms=a1a2a3an=59049Determinethevalueofn
Answered by linkelly0615 last updated on 29/Mar/17
  ...  Set: a_k =a_1 ∙r^(k−1)   (Because the sequence is a geometric sequence.)  ⇒a_1 ∙a_n =a_1 ∙(a_1 ∙r^(n−1) )=a_1 ^2 ∙r^(n−1)    ∵a_k =a_1 ∙r^(k−1)   ∴a_1 a_2 a_3 ...a_n =a_1 (a_1 r)(a_1 r^2 )...(a_1 r^(n−1) )  =a_1 ^n r^((((n(n−1))/2))) =(a_1 ^2 r^(n−1) )^(((n/2)))   =3^(n/2) =59049  ⇒(n/2)=log _3 59049=10  (That means 3^(10) =59049)  ⇒n=20
Set:ak=a1rk1(Becausethesequenceisageometricsequence.)a1an=a1(a1rn1)=a12rn1ak=a1rk1a1a2a3an=a1(a1r)(a1r2)(a1rn1)=a1nr(n(n1)2)=(a12rn1)(n2)=3n2=59049n2=log359049=10(Thatmeans310=59049)n=20
Commented by Joel576 last updated on 29/Mar/17
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *