Menu Close

a-If-z-1-i-3-prove-that-prove-that-z-14-2-13-1-i-3-b-prove-that-in-triangle-ABC-a-2-b-c-2-cos-2-A-2-b-c-2-sin-2-A-2-




Question Number 75272 by peter frank last updated on 09/Dec/19
a) If z=1+i(√3) prove that  prove that  z^(14) =2^(13) (−1+i(√3) )    b)prove that in triangle ABC  a^2 −(b−c)^2 cos^2 (A/2)=(b+c)^2 sin^2 (A/2)
a)Ifz=1+i3provethatprovethatz14=213(1+i3)b)provethatintriangleABCa2(bc)2cos2A2=(b+c)2sin2A2
Answered by mind is power last updated on 09/Dec/19
z=1+i(√3)=2((1/2)+((i(√3))/2))⇒z=2(cos((π/3))+isin((π/3)))=2e^((iπ)/3)   z^(14) =2^(14) (e^(14((iπ)/3)) )=2^(13) .2.e^(i4π+((i2π)/3)) =2^(13) .2(cos(((2π)/3))+isin(((2π)/3)))  =2^(13) .2(−(1/2)+((i(√3))/2))=2^(13) (−1+i(√3))  b)  a^2 =b^2 +c^2 −2cbcos(A)=b^2 +c^2 −2cb(cos^2 ((A/2))−sin^2 ((A/2)))  =b^2 (cos^2 ((A/2))+sin^2 ((A/2)))+c^2 (cos^2 ((A/2))+sin^2 ((A/2)))−2cb(cos^2 ((A/2))+sin^2 ((A/2)))  =cos^2 ((A/2))(b^2 +c^2 −2cb)+sin^2 ((A/2))(b^2 +c^2 +2cb)  =(b−c)^2 cos^2 ((A/2))+(b+c)^2 sin^2 ((A/2))  ⇔a^2 −(b−c)^2 cos^2 ((A/2))=(b+c)^2 sin^2 ((A/2))
z=1+i3=2(12+i32)z=2(cos(π3)+isin(π3))=2eiπ3z14=214(e14iπ3)=213.2.ei4π+i2π3=213.2(cos(2π3)+isin(2π3))=213.2(12+i32)=213(1+i3)b)a2=b2+c22cbcos(A)=b2+c22cb(cos2(A2)sin2(A2))=b2(cos2(A2)+sin2(A2))+c2(cos2(A2)+sin2(A2))2cb(cos2(A2)+sin2(A2))=cos2(A2)(b2+c22cb)+sin2(A2)(b2+c2+2cb)=(bc)2cos2(A2)+(b+c)2sin2(A2)a2(bc)2cos2(A2)=(b+c)2sin2(A2)

Leave a Reply

Your email address will not be published. Required fields are marked *