Menu Close

a-Let-I-0-e-x-x-2-dx-Show-that-it-is-legitimate-to-take-the-derivative-of-I-and-also-I-0-Then-show-that-




Question Number 136476 by Ar Brandon last updated on 22/Mar/21
(a) Let                                 I(α)=∫_0 ^∞ e^(−(x−(α/x))^2 ) dx  Show that it is legitimate to take the derivative of I(α) and also I′(α)=  0. Then show that                                                I(α)=((√π)/2).  (b) Use (a) to prove                                         ∫_0 ^∞ e^(−(x^2 +α^2 x^(−2) )) dx=((√π)/2)e^(−2α) .
(a)LetI(α)=0e(xαx)2dxShowthatitislegitimatetotakethederivativeofI(α)andalsoI(α)=0.ThenshowthatI(α)=π2.(b)Use(a)toprove0e(x2+α2x2)dx=π2e2α.
Answered by Dwaipayan Shikari last updated on 22/Mar/21
I(α)=∫_0 ^∞ e^(−x^2 −(α^2 /x^2 )) dx  I′(α)=−2∫_0 ^∞ (α/x^2 )e^(−x^2 −(α^2 /x^2 )) dx                    (α/x)=u⇒((−α)/x^2 )=(du/dx)  I′(α)=−2∫_0 ^∞ e^(−(α^2 /u^2 )−u^2 ) du⇒I′(α)=−2I(α)  I(α)=Ce^(−2α)   I(0)=C=∫_0 ^∞ e^(−x^2 ) dx=((√π)/2)  I(α)=((√π)/2)e^(−2α)
I(α)=0ex2α2x2dxI(α)=20αx2ex2α2x2dxαx=uαx2=dudxI(α)=20eα2u2u2duI(α)=2I(α)I(α)=Ce2αI(0)=C=0ex2dx=π2I(α)=π2e2α

Leave a Reply

Your email address will not be published. Required fields are marked *