Menu Close

A-lim-x-pi-2-sin-50-x-5sin-30-x-6-cos-20-x-cos-40-2x-1-




Question Number 132201 by SOMEDAVONG last updated on 12/Feb/21
A=lim_(x→(π/2)) ((sin^(50) x+5sin^(30) x−6)/(cos^(20) x+cos^(40) 2x−1))
$$\mathrm{A}=\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\frac{\mathrm{sin}^{\mathrm{50}} \mathrm{x}+\mathrm{5sin}^{\mathrm{30}} \mathrm{x}−\mathrm{6}}{\mathrm{cos}^{\mathrm{20}} \mathrm{x}+\mathrm{cos}^{\mathrm{40}} \mathrm{2x}−\mathrm{1}} \\ $$
Answered by bemath last updated on 12/Feb/21
Answered by mathmax by abdo last updated on 13/Feb/21
let f(x)=((sin^(50) x+5sin^(30) x−6)/(cos^(20) x+cos^(40) x−1))  changement x=(π/2)−t give  f(x)=f((π/2)−t) =((cos^(50) x+5cos^(30) x−6)/(sin^(20) x+cos^(40) (2x)−1)) ⇒  f(x)∼ (((1−(x^2 /2))^(50)  +5(1−(x^2 /2))^(30) −6)/(x^(20)  +(1−2x^2 )^(40) −1))∼((1−25x^2 +5(1−15x^2 )−6)/(0+1−80x^2 −1))  =((−25x^2 −5.15x^2 )/(−80x^2 )) =((25+5.15)/(80)) =((100)/(80)) =((10)/8)=(5/4) ⇒lim_(x→(π/2))  f(x)=(5/4)
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{sin}^{\mathrm{50}} \mathrm{x}+\mathrm{5sin}^{\mathrm{30}} \mathrm{x}−\mathrm{6}}{\mathrm{cos}^{\mathrm{20}} \mathrm{x}+\mathrm{cos}^{\mathrm{40}} \mathrm{x}−\mathrm{1}}\:\:\mathrm{changement}\:\mathrm{x}=\frac{\pi}{\mathrm{2}}−\mathrm{t}\:\mathrm{give} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{f}\left(\frac{\pi}{\mathrm{2}}−\mathrm{t}\right)\:=\frac{\mathrm{cos}^{\mathrm{50}} \mathrm{x}+\mathrm{5cos}^{\mathrm{30}} \mathrm{x}−\mathrm{6}}{\mathrm{sin}^{\mathrm{20}} \mathrm{x}+\mathrm{cos}^{\mathrm{40}} \left(\mathrm{2x}\right)−\mathrm{1}}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\sim\:\frac{\left(\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{50}} \:+\mathrm{5}\left(\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{30}} −\mathrm{6}}{\mathrm{x}^{\mathrm{20}} \:+\left(\mathrm{1}−\mathrm{2x}^{\mathrm{2}} \right)^{\mathrm{40}} −\mathrm{1}}\sim\frac{\mathrm{1}−\mathrm{25x}^{\mathrm{2}} +\mathrm{5}\left(\mathrm{1}−\mathrm{15x}^{\mathrm{2}} \right)−\mathrm{6}}{\mathrm{0}+\mathrm{1}−\mathrm{80x}^{\mathrm{2}} −\mathrm{1}} \\ $$$$=\frac{−\mathrm{25x}^{\mathrm{2}} −\mathrm{5}.\mathrm{15x}^{\mathrm{2}} }{−\mathrm{80x}^{\mathrm{2}} }\:=\frac{\mathrm{25}+\mathrm{5}.\mathrm{15}}{\mathrm{80}}\:=\frac{\mathrm{100}}{\mathrm{80}}\:=\frac{\mathrm{10}}{\mathrm{8}}=\frac{\mathrm{5}}{\mathrm{4}}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{5}}{\mathrm{4}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *