Menu Close

a-line-L-intersects-0-0-and-the-curve-y-x-2-at-x-t-What-is-the-equation-of-the-line-What-is-the-area-between-L-and-y-from-x-0-to-x-t-




Question Number 8070 by FilupSmith last updated on 29/Sep/16
a line L intersects (0, 0) and the curve  y=x^2    at x=t.  What is the equation of the line?  What is the area between L and y from  x=0 to x=t?
$$\mathrm{a}\:\mathrm{line}\:{L}\:\mathrm{intersec}{ts}\:\left(\mathrm{0},\:\mathrm{0}\right)\:{and}\:{the}\:{curve} \\ $$$${y}={x}^{\mathrm{2}} \:\:\:{at}\:{x}={t}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line}? \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{between}\:{L}\:\mathrm{and}\:{y}\:\mathrm{from} \\ $$$${x}=\mathrm{0}\:\mathrm{to}\:{x}={t}? \\ $$
Answered by sandy_suhendra last updated on 29/Sep/16
so the line L intersects (0,0) and (t, t^2 )  the equation of L ⇒ ((x−x_1 )/(x_2 −x_1 )) = ((y−y_1 )/(y_2 −y_1 ))                                      ((x−t)/(0−t)) = ((y−t^2 )/(0−t^2 ))                                       tx−t^2  = y−t^2                                                 y=tx  the area between L and y  =  _0 ∫^(  t)  (tx−x^2 ) dx  = [(1/2_ )tx^2 −(1/3)x^3  ]_( 0) ^( t)   =(1/2)t^3 −(1/3)t^3  = (1/6)t^3
$${so}\:{the}\:{line}\:{L}\:{intersects}\:\left(\mathrm{0},\mathrm{0}\right)\:{and}\:\left({t},\:{t}^{\mathrm{2}} \right) \\ $$$${the}\:{equation}\:{of}\:{L}\:\Rightarrow\:\frac{{x}−{x}_{\mathrm{1}} }{{x}_{\mathrm{2}} −{x}_{\mathrm{1}} }\:=\:\frac{{y}−{y}_{\mathrm{1}} }{{y}_{\mathrm{2}} −{y}_{\mathrm{1}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{x}−{t}}{\mathrm{0}−{t}}\:=\:\frac{{y}−{t}^{\mathrm{2}} }{\mathrm{0}−{t}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{tx}−{t}^{\mathrm{2}} \:=\:{y}−{t}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{y}}=\boldsymbol{{tx}} \\ $$$${the}\:{area}\:{between}\:{L}\:{and}\:{y} \\ $$$$=\:\:_{\mathrm{0}} \int^{\:\:{t}} \:\left({tx}−{x}^{\mathrm{2}} \right)\:{dx} \\ $$$$=\:\left[\frac{\mathrm{1}}{\mathrm{2}_{} }{tx}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} \:\right]_{\:\mathrm{0}} ^{\:{t}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{3}}{t}^{\mathrm{3}} \:=\:\frac{\mathrm{1}}{\mathrm{6}}\boldsymbol{{t}}^{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *