Menu Close

a-n-1-a-n-n-n-a-1-1-a-n-n-N-




Question Number 2644 by 123456 last updated on 24/Nov/15
a_(n+1) =(a_n /n)+n  a_1 =1  a_n =??? n∈N^∗
an+1=ann+na1=1an=???nN
Commented by RasheedAhmad last updated on 24/Nov/15
a_(n+1) =(a_n /n)+n  a_1 =1  a_n =??? n∈N^∗   −−−−−−−−−−  Let n→n−1  a_(n+1) =(a_n /n)+n  ⇒a_n =(a_(n−1) /(n−1))+n−1
an+1=ann+na1=1an=???nNLetnn1an+1=ann+nan=an1n1+n1
Answered by RasheedAhmad last updated on 24/Nov/15
a_(n+1) =(a_n /n)+n  a_1 =1  a_n =??? n∈N^∗   −−−−−−−−−−  n→ n−1  a_(n+1) =(a_n /n)+n  ⇒a_n =(a_(n−1) /(n−1))+n−1  a_1 =1  [given]   a_2 =a_1 +1=2  a_3 =(a_2 /2)+2=3  .....  ....  a_n =n  This can be proved using induction.
an+1=ann+na1=1an=???nNnn1an+1=ann+nan=an1n1+n1a1=1[given]a2=a1+1=2a3=a22+2=3...an=nThiscanbeprovedusinginduction.

Leave a Reply

Your email address will not be published. Required fields are marked *