Menu Close

A-N-1-N-2-x-dx-N-1-N-2-Z-N-1-lt-N-2-Solve-for-A-




Question Number 2645 by Filup last updated on 24/Nov/15
A=∫_N_1  ^N_2  ⌊x⌋dx  (N_1 , N_2 )∈Z,   N_1 <N_2     Solve for A
$${A}=\int_{{N}_{\mathrm{1}} } ^{{N}_{\mathrm{2}} } \lfloor{x}\rfloor{dx} \\ $$$$\left({N}_{\mathrm{1}} ,\:{N}_{\mathrm{2}} \right)\in\mathbb{Z},\:\:\:{N}_{\mathrm{1}} <{N}_{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Solve}\:\mathrm{for}\:{A} \\ $$
Answered by Filup last updated on 24/Nov/15
let    N_1 =N,    N_2 =N+k  (N_1 , N_2 )∈Z,   ∴(N, k)∈Z  N_1 <N_2 ,   ∴k>0    N≤x<N+1⇒⌊x⌋=N  N+1≤x<N+2⇒⌊x⌋=N+1  ⋮  N+k−1≤x<N+k⇒⌊x⌋=N+k−1    The area between a→a+1 for ⌊x⌋  =∫_a ^( a+1) ⌊x⌋=a  ∵It is a rectangle with  l=1,  h=a    For the total area of A, we need to sum  all the rectangular areas    ∫_N ^(N+k) ⌊x⌋dx=N+(N+1)+...+(N+k−1)  =N(k)+(1+2+...+(k−1))  =Nk+Σ_(i=1) ^(k−1) i  =Nk+(1/2)(k−1)(1+k−1)  =Nk+(1/2)k(k−1)    ∴A=∫_N ^( N+k) ⌊x⌋dx=Nk+(1/2)k(k−1)    Test:  ∫_2 ^( 5) ⌊x⌋dx=9   (wolfram)  N=2,   N+k=5⇒k=3  A=2×3+(1/2)3(3−1)  =6+(1/2)(2)3  =9    =True
$$\mathrm{let}\:\:\:\:{N}_{\mathrm{1}} ={N},\:\:\:\:{N}_{\mathrm{2}} ={N}+{k} \\ $$$$\left({N}_{\mathrm{1}} ,\:{N}_{\mathrm{2}} \right)\in\mathbb{Z},\:\:\:\therefore\left({N},\:{k}\right)\in\mathbb{Z} \\ $$$${N}_{\mathrm{1}} <{N}_{\mathrm{2}} ,\:\:\:\therefore{k}>\mathrm{0} \\ $$$$ \\ $$$${N}\leqslant{x}<{N}+\mathrm{1}\Rightarrow\lfloor{x}\rfloor={N} \\ $$$${N}+\mathrm{1}\leqslant{x}<{N}+\mathrm{2}\Rightarrow\lfloor{x}\rfloor={N}+\mathrm{1} \\ $$$$\vdots \\ $$$${N}+{k}−\mathrm{1}\leqslant{x}<{N}+{k}\Rightarrow\lfloor{x}\rfloor={N}+{k}−\mathrm{1} \\ $$$$ \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{between}\:{a}\rightarrow{a}+\mathrm{1}\:\mathrm{for}\:\lfloor{x}\rfloor \\ $$$$=\int_{{a}} ^{\:{a}+\mathrm{1}} \lfloor{x}\rfloor={a} \\ $$$$\because\mathrm{It}\:\mathrm{is}\:\mathrm{a}\:\mathrm{rectangle}\:\mathrm{with}\:\:{l}=\mathrm{1},\:\:{h}={a} \\ $$$$ \\ $$$$\mathrm{For}\:\mathrm{the}\:\mathrm{total}\:\mathrm{area}\:\mathrm{of}\:{A},\:\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{sum} \\ $$$$\mathrm{all}\:\mathrm{the}\:\mathrm{rectangular}\:\mathrm{areas} \\ $$$$ \\ $$$$\int_{{N}} ^{{N}+{k}} \lfloor{x}\rfloor{dx}={N}+\left({N}+\mathrm{1}\right)+…+\left({N}+{k}−\mathrm{1}\right) \\ $$$$={N}\left({k}\right)+\left(\mathrm{1}+\mathrm{2}+…+\left({k}−\mathrm{1}\right)\right) \\ $$$$={Nk}+\underset{{i}=\mathrm{1}} {\overset{{k}−\mathrm{1}} {\sum}}{i} \\ $$$$={Nk}+\frac{\mathrm{1}}{\mathrm{2}}\left({k}−\mathrm{1}\right)\left(\mathrm{1}+{k}−\mathrm{1}\right) \\ $$$$={Nk}+\frac{\mathrm{1}}{\mathrm{2}}{k}\left({k}−\mathrm{1}\right) \\ $$$$ \\ $$$$\therefore{A}=\int_{{N}} ^{\:{N}+{k}} \lfloor{x}\rfloor{dx}={Nk}+\frac{\mathrm{1}}{\mathrm{2}}{k}\left({k}−\mathrm{1}\right) \\ $$$$ \\ $$$${Test}: \\ $$$$\int_{\mathrm{2}} ^{\:\mathrm{5}} \lfloor{x}\rfloor{dx}=\mathrm{9}\:\:\:\left({wolfram}\right) \\ $$$${N}=\mathrm{2},\:\:\:{N}+{k}=\mathrm{5}\Rightarrow{k}=\mathrm{3} \\ $$$${A}=\mathrm{2}×\mathrm{3}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{3}\left(\mathrm{3}−\mathrm{1}\right) \\ $$$$=\mathrm{6}+\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}\right)\mathrm{3} \\ $$$$=\mathrm{9}\:\: \\ $$$$={True} \\ $$
Commented by Yozzi last updated on 24/Nov/15
Σ_(i=0) ^(k−1) i=0+Σ_(i=1) ^(k−1) i=Σ_(i=1) ^(k−1) i=((k−1)/2)(k−1+1)=((k(k−1))/2)≠(1/2)(k−1)^2
$$\underset{{i}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\sum}}{i}=\mathrm{0}+\underset{{i}=\mathrm{1}} {\overset{{k}−\mathrm{1}} {\sum}}{i}=\underset{{i}=\mathrm{1}} {\overset{{k}−\mathrm{1}} {\sum}}{i}=\frac{{k}−\mathrm{1}}{\mathrm{2}}\left({k}−\mathrm{1}+\mathrm{1}\right)=\frac{{k}\left({k}−\mathrm{1}\right)}{\mathrm{2}}\neq\frac{\mathrm{1}}{\mathrm{2}}\left({k}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$ \\ $$
Commented by Filup last updated on 24/Nov/15
Thanks, i just noticed the mistake myself  haha
$${Thanks},\:\mathrm{i}\:\mathrm{just}\:\mathrm{noticed}\:\mathrm{the}\:\mathrm{mistake}\:\mathrm{myself} \\ $$$$\mathrm{haha} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *