Menu Close

A-N-1-N-2-x-dx-N-1-N-2-Z-N-1-lt-N-2-Solve-for-A-




Question Number 2645 by Filup last updated on 24/Nov/15
A=∫_N_1  ^N_2  ⌊x⌋dx  (N_1 , N_2 )∈Z,   N_1 <N_2     Solve for A
A=N1N2xdx(N1,N2)Z,N1<N2SolveforA
Answered by Filup last updated on 24/Nov/15
let    N_1 =N,    N_2 =N+k  (N_1 , N_2 )∈Z,   ∴(N, k)∈Z  N_1 <N_2 ,   ∴k>0    N≤x<N+1⇒⌊x⌋=N  N+1≤x<N+2⇒⌊x⌋=N+1  ⋮  N+k−1≤x<N+k⇒⌊x⌋=N+k−1    The area between a→a+1 for ⌊x⌋  =∫_a ^( a+1) ⌊x⌋=a  ∵It is a rectangle with  l=1,  h=a    For the total area of A, we need to sum  all the rectangular areas    ∫_N ^(N+k) ⌊x⌋dx=N+(N+1)+...+(N+k−1)  =N(k)+(1+2+...+(k−1))  =Nk+Σ_(i=1) ^(k−1) i  =Nk+(1/2)(k−1)(1+k−1)  =Nk+(1/2)k(k−1)    ∴A=∫_N ^( N+k) ⌊x⌋dx=Nk+(1/2)k(k−1)    Test:  ∫_2 ^( 5) ⌊x⌋dx=9   (wolfram)  N=2,   N+k=5⇒k=3  A=2×3+(1/2)3(3−1)  =6+(1/2)(2)3  =9    =True
letN1=N,N2=N+k(N1,N2)Z,(N,k)ZN1<N2,k>0Nx<N+1x=NN+1x<N+2x=N+1N+k1x<N+kx=N+k1Theareabetweenaa+1forx=aa+1x=aItisarectanglewithl=1,h=aForthetotalareaofA,weneedtosumalltherectangularareasNN+kxdx=N+(N+1)++(N+k1)=N(k)+(1+2++(k1))=Nk+k1i=1i=Nk+12(k1)(1+k1)=Nk+12k(k1)A=NN+kxdx=Nk+12k(k1)Test:25xdx=9(wolfram)N=2,N+k=5k=3A=2×3+123(31)=6+12(2)3=9=True
Commented by Yozzi last updated on 24/Nov/15
Σ_(i=0) ^(k−1) i=0+Σ_(i=1) ^(k−1) i=Σ_(i=1) ^(k−1) i=((k−1)/2)(k−1+1)=((k(k−1))/2)≠(1/2)(k−1)^2
k1i=0i=0+k1i=1i=k1i=1i=k12(k1+1)=k(k1)212(k1)2
Commented by Filup last updated on 24/Nov/15
Thanks, i just noticed the mistake myself  haha
Thanks,ijustnoticedthemistakemyselfhaha

Leave a Reply

Your email address will not be published. Required fields are marked *