Menu Close

a-n-2-a-n-1-a-1-2-L-lim-n-a-n-2-2-2-2-L-




Question Number 4589 by FilupSmith last updated on 09/Feb/16
a_n =(√(2+a_(n−1) ))  a_1 =(√2)    L=lim_(n→∞)  a_n =(√(2+(√(2+(√(2+(√(2+...))))))))  L=?
an=2+an1a1=2L=limnan=2+2+2+2+L=?
Answered by Rasheed Soomro last updated on 09/Feb/16
a_n =(√(2+a_(n−1) ))  a_1 =2  a_2 =(√(2+a_1 ))=(√(2+2))=2  a_3 =(√(2+a_2 ))=(√(2+2))=2  This suggests that  a_n =2  How a_n =(√(2+(√(2+(√(2+(√(2+...))))))))   ?  ....................................................  Answer for corrected question  a_n =(√(2+a_(n−1) ))  a_1 =(√2)  L=(√(2+(√(2+(√(2+(√(2+...))))))))   L^2 =2+(√(2+(√(2+(√(2+(√(2+...))))))))   L^2 =2+L  L^2 −L−2=0  (L−2)(L+1)=0  L=2  ∣  L=−1  (√(2+(√(2+(√(2+(√(2+...))))))))   may not be negative  and  there is also chance of extraneous  roots, so I think −1 is extraneous root.  So L=2
an=2+an1a1=2a2=2+a1=2+2=2a3=2+a2=2+2=2Thissuggeststhatan=2Howan=2+2+2+2+?.Answerforcorrectedquestionan=2+an1a1=2L=2+2+2+2+L2=2+2+2+2+2+L2=2+LL2L2=0(L2)(L+1)=0L=2L=12+2+2+2+maynotbenegativeandthereisalsochanceofextraneousroots,soIthink1isextraneousroot.SoL=2
Commented by FilupSmith last updated on 09/Feb/16
sorry i meant  a_1 =(√2)
sorryimeanta1=2

Leave a Reply

Your email address will not be published. Required fields are marked *