Menu Close

a-n-a-n-1-2-a-n-2-2-If-a-1-1-and-a-2-1-what-is-the-remainder-of-a-2016-when-divided-by-10-




Question Number 9485 by Joel575 last updated on 10/Dec/16
a_n  = a_(n−1) ^2  + a_(n−2) ^2   If a_1 =1 and a_2 =1, what is the remainder of a_(2016)  when divided by 10 ?
an=an12+an22Ifa1=1anda2=1,whatistheremainderofa2016whendividedby10?
Commented by sou1618 last updated on 10/Dec/16
(mod 10)  a_3 =1^2 +1^2 =2  a_4 =1^2 +2^2 =5  a_5 =2^2 +5^2 =29≡9  a_6 =5^2 +29^2 ≡5^2 +9^2 ≡5+1=6  a_7 ≡9^2 +6^2 ≡1+6=7  a_8 ≡6^2 +7^2 ≡6+9≡5  a_9 ≡7^2 +5^2 ≡9+5≡4  a_(10) ≡5^2 +4^2 ≡5+6≡1  a_(11) ≡4^2 +1^2 ≡6+1=7  a_(12) ≡1^2 +7^2 ≡1+9≡0  a_(13) ≡7^2 +0^2 ≡9+0=9  a_(14) ≡0^2 +9^2 ≡0+1=1  a_(15) ≡9^2 +1^2 ≡1+1=2    a_2 ≡a_(14) ,a_3 ≡a_(15)   a_(16) =a_(14) ^2 +a_(15) ^2 ≡a_2 ^2 +a_3 ^2 ≡a_4   a_(17) =a_(15) ^2 +a_(16) ^2 ≡a_3 ^2 +a_4 ^2 ≡a_5   ....  (k=1,2,3...10,11,12  / n=0,1,2,3.....)  a_(k+12n) ≡a_k   a_(2016) =a_(12+12×167) ≡a_(12) =0  (∵2016=12×168)    a_(2016) ≡0 (mod 10)
(mod10)a3=12+12=2a4=12+22=5a5=22+52=299a6=52+29252+925+1=6a792+621+6=7a862+726+95a972+529+54a1052+425+61a1142+126+1=7a1212+721+90a1372+029+0=9a1402+920+1=1a1592+121+1=2a2a14,a3a15a16=a142+a152a22+a32a4a17=a152+a162a32+a42a5.(k=1,2,310,11,12/n=0,1,2,3..)ak+12naka2016=a12+12×167a12=0(2016=12×168)a20160(mod10)
Commented by Joel575 last updated on 11/Dec/16
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *