Menu Close

a-n-m-n-m-n-0-b-n-m-n-gt-0-m-0-b-n-b-m-n-gt-0-m-gt-0-b-n-0-n-0-b-n-1-0-lt-n-lt-5-b-n-1-b-n-1-n-5-b-n-1-5-lt-n-10-1-n-gt-10-find-a-5-5-




Question Number 298 by 123456 last updated on 25/Jan/15
a(n,m)= { ((n+m),(n≤0)),((b(n)+m),(n>0∧m≤0)),((b(n)+b(m)),(n>0∧m>0)) :}  b(n)= { (0,(n≤0)),((b(n−1)),(0<n<5)),((b(n−1)+b(n+1)),(n=5)),((b(n+1)),(5<n≤10)),(1,(n>10)) :}  find  a(5,5)+a(4,6)
$${a}\left(\mathrm{n},{m}\right)=\begin{cases}{{n}+{m}}&{{n}\leqslant\mathrm{0}}\\{{b}\left({n}\right)+{m}}&{{n}>\mathrm{0}\wedge{m}\leqslant\mathrm{0}}\\{{b}\left({n}\right)+{b}\left({m}\right)}&{{n}>\mathrm{0}\wedge{m}>\mathrm{0}}\end{cases} \\ $$$${b}\left({n}\right)=\begin{cases}{\mathrm{0}}&{{n}\leqslant\mathrm{0}}\\{{b}\left({n}−\mathrm{1}\right)}&{\mathrm{0}<{n}<\mathrm{5}}\\{{b}\left({n}−\mathrm{1}\right)+{b}\left({n}+\mathrm{1}\right)}&{{n}=\mathrm{5}}\\{{b}\left({n}+\mathrm{1}\right)}&{\mathrm{5}<{n}\leqslant\mathrm{10}}\\{\mathrm{1}}&{{n}>\mathrm{10}}\end{cases} \\ $$$$\mathrm{find} \\ $$$${a}\left(\mathrm{5},\mathrm{5}\right)+{a}\left(\mathrm{4},\mathrm{6}\right) \\ $$
Answered by prakash jain last updated on 19/Dec/14
a(5,5)=b(5)+b(5)  a(4,6)=b(4)+b(6)  b(4)=b(3)=b(2)=b(1)=b(0)=0  b(6)=b(7)=b(8)=b(9)=b(10)=b(11)=1  b(5)=b(4)+b(6)=1  a(5,5)=2  a(4,6)=1  a(5,5)+a(4,6)=3
$${a}\left(\mathrm{5},\mathrm{5}\right)={b}\left(\mathrm{5}\right)+{b}\left(\mathrm{5}\right) \\ $$$${a}\left(\mathrm{4},\mathrm{6}\right)={b}\left(\mathrm{4}\right)+{b}\left(\mathrm{6}\right) \\ $$$${b}\left(\mathrm{4}\right)={b}\left(\mathrm{3}\right)={b}\left(\mathrm{2}\right)={b}\left(\mathrm{1}\right)={b}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${b}\left(\mathrm{6}\right)={b}\left(\mathrm{7}\right)={b}\left(\mathrm{8}\right)={b}\left(\mathrm{9}\right)={b}\left(\mathrm{10}\right)={b}\left(\mathrm{11}\right)=\mathrm{1} \\ $$$${b}\left(\mathrm{5}\right)={b}\left(\mathrm{4}\right)+{b}\left(\mathrm{6}\right)=\mathrm{1} \\ $$$${a}\left(\mathrm{5},\mathrm{5}\right)=\mathrm{2} \\ $$$${a}\left(\mathrm{4},\mathrm{6}\right)=\mathrm{1} \\ $$$${a}\left(\mathrm{5},\mathrm{5}\right)+{a}\left(\mathrm{4},\mathrm{6}\right)=\mathrm{3} \\ $$