Menu Close

a-n-n-N-such-that-a-1-1-2-and-a-n-1-a-n-2-a-n-2-a-n-1-Prove-that-a-1-a-2-a-3-a-n-lt-1-need-helper-




Question Number 7788 by Chantria last updated on 15/Sep/16
(a_n )_(n∈N)  such that a_1 =(1/2)   and a_(n+1) =(a_n ^2 /(a_n ^2 −a_n +1))  Prove that a_1 +a_2 +a_3 +...+a_n  < 1  need helper
(an)nNsuchthata1=12andan+1=an2an2an+1Provethata1+a2+a3++an<1needhelper
Commented by sou1618 last updated on 15/Sep/16
a_1 =(1/2)  a_2 =(((1/2)^2 )/((1/2)^2 −(1/2)+1))=(((1/4))/((3/4)))=(1/3)  ....  ∗prove  a_n <1 (mathematical induction)  when n=1       a_1 =(1/2)<1  when n=k       assume a_k <1  when n=k+1      a_(k+1) =(a_k ^2 /(a_k ^2 −a_k +1))=1+((a_k −1)/(a_k ^2 −a_k +1))      ((a_k −1)/(a_k ^2 −a_k +1))<0 (∵ { ((a_k −1<0)),((a_k ^2 −a_k +1>0)) :})       ⇒a_(k+1) <1  so  a_n <1 (n∈N)  −−−−−−−−−−−−−−−−  a_(n+1) =(a_n ^2 /(a_n ^2 −a_n +1))=1+((a_n −1)/(a_n ^2 −a_n +1))  a_(n+1) −1=((a_n −1)/(a_n ^2 −a_n +1))  (1/(a_(n+1) −1))=((a_n ^2 −a_n +1)/(a_n −1))   (a_n ≠1)  (1/(a_(n+1) −1))=a_n +(1/(a_n −1))  (1/(a_(n+1) −1))−(1/(a_n −1))=a_n     S_n =a_1 +a_2 +...+a_(n−1) +a_n   S_n =((1/(a_2 −1))−(1/(a_1 −1)))+((1/(a_3 −1))−(1/(a_2 −1)))+...+((1/(a_n −1))−(1/(a_(n−1) −1)))+((1/(a_(n+1) −1))−(1/(a_n −1)))  S_n =−(1/(a_1 −1))+(1/(a_(n+1) −1))  S_n =2+(1/(a_(n+1) −1))  S_n =2−(1/(1−a_(n+1) ))  (1/(1−a_(n+1) ))>(1/1) (∵ a_(n+1) <1)  S_n <1
a1=12a2=(1/2)2(1/2)2(1/2)+1=(1/4)(3/4)=13.provean<1(mathematicalinduction)whenn=1a1=12<1whenn=kassumeak<1whenn=k+1ak+1=ak2ak2ak+1=1+ak1ak2ak+1ak1ak2ak+1<0({ak1<0ak2ak+1>0)ak+1<1soan<1(nN)an+1=an2an2an+1=1+an1an2an+1an+11=an1an2an+11an+11=an2an+1an1(an1)1an+11=an+1an11an+111an1=anSn=a1+a2++an1+anSn=(1a211a11)+(1a311a21)++(1an11an11)+(1an+111an1)Sn=1a11+1an+11Sn=2+1an+11Sn=211an+111an+1>11(an+1<1)Sn<1
Commented by Chantria last updated on 16/Sep/16
nice sir. thanks
nicesir.thanks

Leave a Reply

Your email address will not be published. Required fields are marked *