Menu Close

A-parabola-with-equation-y-x-2-k-5-intersects-a-circle-with-equation-x-2-y-2-25-at-exactly-3-points-A-B-C-Determine-all-such-positive-integers-k-for-which-the-area-of-ABC-is-an-integer




Question Number 11607 by Joel576 last updated on 29/Mar/17
A parabola with equation y = (x^2 /k) − 5 intersects  a circle with equation x^2  + y^2  = 25 at exactly 3 points A, B, C  Determine all such positive integers k for which  the area of ΔABC is an integer
Aparabolawithequationy=x2k5intersectsacirclewithequationx2+y2=25atexactly3pointsA,B,CDetermineallsuchpositiveintegerskforwhichtheareaofΔABCisaninteger
Answered by mrW1 last updated on 29/Mar/17
A(−t,s)  B(0,−5)  C(t,s)  ΔABC=A=((2t(s+5))/2)=t(s+5)  t^2 +s^2 =25  s=(t^2 /k)−5  ks=t^2 −5k  ks=25−s^2 −5k  s^2 +ks+5(k−5)=0  s=((−k±(√(k^2 −4×5(k−5))))/2)=((−k±(k−10))/2)=−5,5−k  s=−5⇒Point B    s=5−k⇒t^2 =25−(5−k)^2 =k(10−k)  t=(√(k(10−k)))   (k<10)  A=t(s+5)=(√(k(10−k)))(10−k)=n (n=integer{  k(10−k)(10−k)^2 =n^2   k(10−k)=((n/(10−k)))^2 =i^2   (i=integer)  k^2 −10k+i^2 =0  k=((10±(√(100−4i^2 )))/2)=5±(√(25−i^2 ))  i=0⇒k=0,10 (not ok, since k≠0,k<10)  i=1⇒k=5±(√(24)) (no integer)  i=2⇒k=5±(√(21)) (no integer)  i=3⇒k=5±4=1,9  i=4⇒k=5±3=2,8  i=5⇒k=5    ⇒all possible positive integer values for k  are 1,2,5,8,9.
A(t,s)B(0,5)C(t,s)ΔABC=A=2t(s+5)2=t(s+5)t2+s2=25s=t2k5ks=t25kks=25s25ks2+ks+5(k5)=0s=k±k24×5(k5)2=k±(k10)2=5,5ks=5PointBs=5kt2=25(5k)2=k(10k)t=k(10k)(k<10)A=t(s+5)=k(10k)(10k)=n(n=integer{k(10k)(10k)2=n2k(10k)=(n10k)2=i2(i=integer)k210k+i2=0k=10±1004i22=5±25i2i=0k=0,10(notok,sincek0,k<10)i=1k=5±24(nointeger)i=2k=5±21(nointeger)i=3k=5±4=1,9i=4k=5±3=2,8i=5k=5allpossiblepositiveintegervaluesforkare1,2,5,8,9.
Commented by Joel576 last updated on 29/Mar/17
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *