Question Number 132683 by otchereabdullai@gmail.com last updated on 15/Feb/21
$$\mathrm{A}\:\mathrm{particle}\:\mathrm{in}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{with} \\ $$$$\mathrm{uniform}\:\mathrm{deceleration}\:\mathrm{has}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of} \\ $$$$\mathrm{40ms}^{−\mathrm{1}} \:\mathrm{at}\:\mathrm{point}\:\mathrm{P}\:,\:\mathrm{20ms}^{−\mathrm{1}} \:\mathrm{at}\:\mathrm{point}\:\mathrm{Q} \\ $$$$\mathrm{and}\:\mathrm{comes}\:\mathrm{to}\:\mathrm{rest}\:\mathrm{at}\:\mathrm{point}\:\mathrm{R}\:\mathrm{where}\: \\ $$$$\mathrm{QR}=\:\mathrm{50m}.\:\mathrm{calculate}\:\mathrm{the} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Distance}\:\mathrm{PQ} \\ $$$$\left(\mathrm{ii}\right)\mathrm{Time}\:\mathrm{taken}\:\mathrm{to}\:\mathrm{cover}\:\mathrm{PQ} \\ $$$$\left(\mathrm{iii}\right)\mathrm{Time}\:\mathrm{taking}\:\mathrm{to}\:\mathrm{cover}\:\mathrm{PR} \\ $$$$ \\ $$
Answered by mr W last updated on 16/Feb/21
$${Method}\:{I} \\ $$$${say}\:{uniform}\:{deceleration}\:=\:{a}={constant} \\ $$$${a}=\frac{{dv}}{{dt}}=\frac{{dv}}{{ds}}×\frac{{ds}}{{dt}}={v}\frac{{dv}}{{ds}} \\ $$$${vdv}={ads} \\ $$$$\int{vdv}={a}\int{ds} \\ $$$$\Rightarrow\frac{{v}^{\mathrm{2}} }{\mathrm{2}}+{C}={as} \\ $$$${at}\:{P}:\:{s}=\mathrm{0},\:{v}=\mathrm{40}\:\Rightarrow\frac{\mathrm{40}^{\mathrm{2}} }{\mathrm{2}}+{C}=\mathrm{0}\:\:\:…\left({i}\right) \\ $$$${at}\:{Q}:\:{s}={x},\:{v}=\mathrm{20}\:\Rightarrow\frac{\mathrm{20}^{\mathrm{2}} }{\mathrm{2}}+{C}={ax}\:\:\:…\left({ii}\right) \\ $$$${at}\:{R}:\:{s}={x}+\mathrm{50},\:{v}=\mathrm{0}\:\Rightarrow{C}={a}\left({x}+\mathrm{50}\right)\:\:\:…\left({iii}\right) \\ $$$$\Rightarrow{C}=−\mathrm{800} \\ $$$$\Rightarrow{ax}=\mathrm{200}−\mathrm{800}=−\mathrm{600} \\ $$$$\Rightarrow{a}\left({x}+\mathrm{50}\right)=−\mathrm{800} \\ $$$$\frac{{x}+\mathrm{50}}{{x}}=\frac{\mathrm{800}}{\mathrm{600}} \\ $$$$\frac{{x}+\mathrm{50}}{{x}}=\frac{\mathrm{4}}{\mathrm{3}}\:\Rightarrow{x}=\mathrm{150} \\ $$$$\Rightarrow{a}=−\frac{\mathrm{600}}{\mathrm{150}}=−\mathrm{4}\:{m}/{s}^{\mathrm{2}} \\ $$$$ \\ $$$${time}\:{for}\:{PQ}={t}_{\mathrm{1}} : \\ $$$${v}_{{Q}} ={v}_{{P}} +{at}_{\mathrm{1}} \\ $$$${t}_{\mathrm{1}} =\frac{\mathrm{20}−\mathrm{40}}{−\mathrm{4}}=\mathrm{5}\:{s} \\ $$$${time}\:{for}\:{QR}={t}_{\mathrm{2}} : \\ $$$${t}_{\mathrm{2}} =\frac{\mathrm{0}−\mathrm{20}}{−\mathrm{4}}=\mathrm{5}\:{s} \\ $$
Commented by mr W last updated on 15/Feb/21
Commented by otchereabdullai@gmail.com last updated on 15/Feb/21
$$\mathrm{Prof}\:\mathrm{W}\:\:\mathrm{thank}\:\mathrm{you}\:\mathrm{soooooo}\:\mathrm{much}! \\ $$
Answered by mr W last updated on 16/Feb/21
$${Method}\:{II} \\ $$$$ \\ $$$${let}\:{the}\:{particle}\:{move}\:{backwards}\:{from} \\ $$$${R}\:{to}\:{Q}\:{to}\:{P}.\:{it}\:{moves}\:{then}\:{with}\:{an} \\ $$$${uniform}\:{acceleration}\:{a}. \\ $$$${s}_{\mathrm{1}} ={RQ}=\mathrm{50} \\ $$$${v}_{{Q}} ^{\mathrm{2}} −{v}_{{R}} ^{\mathrm{2}} =\mathrm{2}{as}_{\mathrm{1}} \\ $$$$\Rightarrow{a}=\frac{\mathrm{20}^{\mathrm{2}} −\mathrm{0}}{\mathrm{2}×\mathrm{50}}=\mathrm{4}\:{m}/{s}^{\mathrm{2}} \\ $$$${time}\:{from}\:{R}\:{to}\:{Q}={t}_{\mathrm{1}} \\ $$$${v}_{{Q}} ={v}_{{R}} +{at}_{\mathrm{1}} \\ $$$$\Rightarrow{t}_{\mathrm{1}} =\frac{\mathrm{20}−\mathrm{0}}{\mathrm{4}}=\mathrm{5}\:{s} \\ $$$${s}_{\mathrm{2}} ={QP}={x} \\ $$$${v}_{{P}} ^{\mathrm{2}} −{v}_{{Q}} ^{\mathrm{2}} =\mathrm{2}{ax} \\ $$$$\Rightarrow{x}=\frac{\mathrm{40}^{\mathrm{2}} −\mathrm{20}^{\mathrm{2}} }{\mathrm{2}×\mathrm{4}}=\mathrm{150}\:{m} \\ $$$${time}\:{from}\:{Q}\:{to}\:{P}={t}_{\mathrm{2}} \\ $$$$\Rightarrow{t}_{\mathrm{2}} =\frac{\mathrm{40}−\mathrm{20}}{\mathrm{4}}=\mathrm{5}\:{s} \\ $$
Commented by otchereabdullai@gmail.com last updated on 16/Feb/21
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{prof}\:\mathrm{W} \\ $$