Menu Close

A-particle-moves-with-a-central-acceration-varies-as-the-cube-of-the-distance-if-it-be-projected-from-an-apse-at-distance-a-from-the-origin-with-a-velocity-which-is-2-times-the-velocity-for-a-c




Question Number 465 by shubham last updated on 09/Jan/15
A particle moves with a central acceration varies as the cube of the distance. if it be projected from an apse at distance a from the origin with a velocity which is (√(2 )) times the velocity for a circle of radius a. show that the equation of path is its rcosθ/(√2) = a
$${A}\:{particle}\:{moves}\:{with}\:{a}\:{central}\:{acceration}\:{varies}\:{as}\:{the}\:{cube}\:{of}\:{the}\:{distance}.\:{if}\:{it}\:{be}\:{projected}\:{from}\:{an}\:{apse}\:{at}\:{distance}\:{a}\:{from}\:{the}\:{origin}\:{with}\:{a}\:{velocity}\:{which}\:{is}\:\sqrt{\mathrm{2}\:}\:{times}\:{the}\:{velocity}\:{for}\:{a}\:{circle}\:{of}\:{radius}\:{a}.\:{show}\:{that}\:{the}\:{equation}\:{of}\:{path}\:{is}\:{its}\:{r}\mathrm{cos}\theta/\sqrt{\mathrm{2}}\:=\:{a} \\ $$
Commented by prakash jain last updated on 09/Jan/15
Reformatted  A particle moves with a central  acceration varies as the cube   of the distance. if it be projected  from an apse at distance a  from the origin with a velocity  which is (√(2 )) times the velocity  for a circle of radius a. show that  the equation of path is  its rcosθ/(√2) = a
$$\mathrm{Reformatted} \\ $$$${A}\:{particle}\:{moves}\:{with}\:{a}\:{central} \\ $$$${acceration}\:{varies}\:{as}\:{the}\:{cube}\: \\ $$$${of}\:{the}\:{distance}.\:{if}\:{it}\:{be}\:{projected} \\ $$$${from}\:{an}\:{apse}\:{at}\:{distance}\:{a} \\ $$$${from}\:{the}\:{origin}\:{with}\:{a}\:{velocity} \\ $$$${which}\:{is}\:\sqrt{\mathrm{2}\:}\:{times}\:{the}\:{velocity} \\ $$$${for}\:{a}\:{circle}\:{of}\:{radius}\:{a}.\:{show}\:{that} \\ $$$${the}\:{equation}\:{of}\:{path}\:{is} \\ $$$${its}\:{r}\mathrm{cos}\theta/\sqrt{\mathrm{2}}\:=\:{a} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *