Menu Close

A-plane-has-equation-x-z-4-3-The-line-l-has-vector-equation-r-cos-3-i-2-sin-j-cos-3-k-where-is-a-scalar-parameter-If-l-meets-the-plane-at-P-show-that-as-varies-P-describes




Question Number 1851 by 112358 last updated on 14/Oct/15
A plane has equation x−z=4(√3).  The line l has vector equation  r=λ[(cosθ+(√3))i+((√2)sinθ)j+(cosθ−(√3))k]  where λ is a scalar parameter.  If l meets the plane at P, show that,  as θ varies, P  describes a circle.
Aplanehasequationxz=43.Thelinelhasvectorequationr=λ[(cosθ+3)i+(2sinθ)j+(cosθ3)k]whereλisascalarparameter.IflmeetstheplaneatP,showthat,asθvaries,Pdescribesacircle.
Answered by 123456 last updated on 15/Oct/15
r=λ[(cos θ+(√3))i+(√2)sin θ j+(cos θ−(√3))k]  x−z=4(√3)  λ(cos θ+(√3))−λ(cos θ−(√3))=4(√3)  2λ(√3)=4(√3)  λ=2  .....  rotation of axis   [(x),(z) ]= [((cos 45°),(−sin 45°)),((sin 45°),(cos 45°)) ] [(x_r ),(z_r ) ]   [((cos 45°),(sin 45°)),((−sin 45°),(cos 45°)) ] [(x),(z) ]= [(x_r ),(z_r ) ]  .....   [(x),(y),(z) ]= [((λ(cos θ+(√3)))),((λ(√2)sin θ)),((λ(cos θ−(√3)))) ]   [(x_r ),(y_r ),(z_r ) ]= [((λ(√2)cos θ)),((λ(√2)sin θ)),((−λ(√6))) ]  ......  x_r ^2 +y_r ^2 =2λ^2       (equation of circle)
r=λ[(cosθ+3)i+2sinθj+(cosθ3)k]xz=43λ(cosθ+3)λ(cosθ3)=432λ3=43λ=2..rotationofaxis[xz]=[cos45°sin45°sin45°cos45°][xrzr][cos45°sin45°sin45°cos45°][xz]=[xrzr]..[xyz]=[λ(cosθ+3)λ2sinθλ(cosθ3)][xryrzr]=[λ2cosθλ2sinθλ6]xr2+yr2=2λ2(equationofcircle)

Leave a Reply

Your email address will not be published. Required fields are marked *