Menu Close

a-Prove-that-for-any-real-constant-a-0-e-a-x-2-dx-b-If-a-and-b-are-real-constants-explain-why-we-cannot-split-the-integral-0-e-a-x-2-e-b-x-2-dx-as-the-difference-




Question Number 136197 by Ar Brandon last updated on 19/Mar/21
a. Prove that for any real constant a ∫_0 ^∞ e^(−(a/x^2 )) dx=∞  b. If a and b are real constants, explain why we cannot split the  integral  ∫_0 ^∞ (e^(−(a/x^2 )) −e^(−(b/x^2 )) )dx as the difference ∫_0 ^∞ e^(−(a/x^2 )) dx−∫_0 ^∞ e^(−(b/x^2 )) dx  c. If a≥0 and b≥0 constants, then prove that  ∫_0 ^∞ (e^(−(a/x^2 )) −e^(−(b/x^2 )) )dx=(√(πb))−(√(πa)).  d. If a>b≥0 constants, then prove that ∫_0 ^∞ (e^(−(a/x^2 )) −e^(−(b/x^2 )) )dx=∞
a.Provethatforanyrealconstanta0eax2dx=b.Ifaandbarerealconstants,explainwhywecannotsplittheintegral0(eax2ebx2)dxasthedifference0eax2dx0ebx2dxc.Ifa0andb0constants,thenprovethat0(eax2ebx2)dx=πbπa.d.Ifa>b0constants,thenprovethat0(eax2ebx2)dx=
Answered by Dwaipayan Shikari last updated on 19/Mar/21
I(a)∫_0 ^∞ (e^(−(a/x^2 )) −e^(−(b/x^2 )) )dx  I′(a)=−∫_0 ^∞ (e^(−(a/x^2 )) /x^2 )dx          (1/x)=u⇒−(1/x^2 )=(du/dx)  =−∫_0 ^∞ e^(−au^2 ) du=−(1/2)(√(π/a))   I(a)=−(√(πa))+C⇒I(b)=−(√(πb))+C=0⇒C=(√(πb))  I(a)=(√π)((√b)−(√a))
I(a)0(eax2ebx2)dxI(a)=0eax2x2dx1x=u1x2=dudx=0eau2du=12πaI(a)=πa+CI(b)=πb+C=0C=πbI(a)=π(ba)

Leave a Reply

Your email address will not be published. Required fields are marked *