Menu Close

A-relation-R-defined-by-x-y-R-u-v-v-2-y-2-u-2-x-2-show-that-R-is-an-equivalent-Relation-




Question Number 67688 by Rio Michael last updated on 30/Aug/19
A relation R defined by   _((x,y)) R_((u,v))  ⇔  v^2 −y^2  = u^2 −x^2   show that R is an equivalent Relation.
$${A}\:{relation}\:\mathbb{R}\:{defined}\:{by}\:\:\:_{\left({x},{y}\right)} {R}_{\left({u},{v}\right)} \:\Leftrightarrow\:\:{v}^{\mathrm{2}} −{y}^{\mathrm{2}} \:=\:{u}^{\mathrm{2}} −{x}^{\mathrm{2}} \\ $$$${show}\:{that}\:{R}\:{is}\:{an}\:{equivalent}\:{Relation}. \\ $$
Commented by Prithwish sen last updated on 30/Aug/19
 R_((x,y)) ⇒  y^2 −y^2  = x^2 −x^2  ⇒symmetric  v^2 −y^2  = u^2 −x^2 ⇔y^2 −v^2 =x^2 −u^2  ⇒_((x,y)) R_((u,v)) ⇒_((u,v)) R_((x,y))   i.e reflexive  v^2 −y^2 = u^2 −x^2 and t^2 −v^2  = s^2 −u^2   ⇒t^2 −y^2  = (t^2 −v^2 )−(y^2 −v^2 ) = (s^2 −u^2 )−(x^2 −u^2 )  = s^2 −x^2  i.e _((x,y)) R_((u,v)) and_((u,v)) R_((s,t)) ⇒_((x,y)) R_((s,t))   i.e transitive  ∴ The relation is an equivalance relation.
$$\:\mathrm{R}_{\left(\mathrm{x},\mathrm{y}\right)} \Rightarrow\:\:\mathrm{y}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{x}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} \:\Rightarrow\boldsymbol{\mathrm{symmetric}} \\ $$$$\mathrm{v}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{u}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} \Leftrightarrow\mathrm{y}^{\mathrm{2}} −\mathrm{v}^{\mathrm{2}} =\mathrm{x}^{\mathrm{2}} −\mathrm{u}^{\mathrm{2}} \:\Rightarrow_{\left(\mathrm{x},\mathrm{y}\right)} \mathrm{R}_{\left(\mathrm{u},\mathrm{v}\right)} \Rightarrow_{\left(\mathrm{u},\mathrm{v}\right)} \mathrm{R}_{\left(\mathrm{x},\mathrm{y}\right)} \\ $$$$\mathrm{i}.\mathrm{e}\:\boldsymbol{\mathrm{reflexive}} \\ $$$$\mathrm{v}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} =\:\mathrm{u}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} \mathrm{and}\:\mathrm{t}^{\mathrm{2}} −\mathrm{v}^{\mathrm{2}} \:=\:\mathrm{s}^{\mathrm{2}} −\mathrm{u}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{t}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \:=\:\left(\mathrm{t}^{\mathrm{2}} −\mathrm{v}^{\mathrm{2}} \right)−\left(\mathrm{y}^{\mathrm{2}} −\mathrm{v}^{\mathrm{2}} \right)\:=\:\left(\mathrm{s}^{\mathrm{2}} −\mathrm{u}^{\mathrm{2}} \right)−\left(\mathrm{x}^{\mathrm{2}} −\mathrm{u}^{\mathrm{2}} \right) \\ $$$$=\:\mathrm{s}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} \:\mathrm{i}.\mathrm{e}\:_{\left(\mathrm{x},\mathrm{y}\right)} \mathrm{R}_{\left(\mathrm{u},\mathrm{v}\right)} \mathrm{and}_{\left(\mathrm{u},\mathrm{v}\right)} \mathrm{R}_{\left(\mathrm{s},\mathrm{t}\right)} \Rightarrow_{\left(\mathrm{x},\mathrm{y}\right)} \mathrm{R}_{\left(\mathrm{s},\mathrm{t}\right)} \\ $$$$\mathrm{i}.\mathrm{e}\:\boldsymbol{\mathrm{transitive}} \\ $$$$\therefore\:\mathrm{The}\:\mathrm{relation}\:\mathrm{is}\:\mathrm{an}\:\mathrm{equivalance}\:\mathrm{relation}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *