Menu Close

A-relation-R-defined-by-x-y-R-u-v-v-2-y-2-u-2-x-2-show-that-R-is-an-equivalent-Relation-




Question Number 67688 by Rio Michael last updated on 30/Aug/19
A relation R defined by   _((x,y)) R_((u,v))  ⇔  v^2 −y^2  = u^2 −x^2   show that R is an equivalent Relation.
ArelationRdefinedby(x,y)R(u,v)v2y2=u2x2showthatRisanequivalentRelation.
Commented by Prithwish sen last updated on 30/Aug/19
 R_((x,y)) ⇒  y^2 −y^2  = x^2 −x^2  ⇒symmetric  v^2 −y^2  = u^2 −x^2 ⇔y^2 −v^2 =x^2 −u^2  ⇒_((x,y)) R_((u,v)) ⇒_((u,v)) R_((x,y))   i.e reflexive  v^2 −y^2 = u^2 −x^2 and t^2 −v^2  = s^2 −u^2   ⇒t^2 −y^2  = (t^2 −v^2 )−(y^2 −v^2 ) = (s^2 −u^2 )−(x^2 −u^2 )  = s^2 −x^2  i.e _((x,y)) R_((u,v)) and_((u,v)) R_((s,t)) ⇒_((x,y)) R_((s,t))   i.e transitive  ∴ The relation is an equivalance relation.
R(x,y)y2y2=x2x2symmetricv2y2=u2x2y2v2=x2u2(x,y)R(u,v)(u,v)R(x,y)i.ereflexivev2y2=u2x2andt2v2=s2u2t2y2=(t2v2)(y2v2)=(s2u2)(x2u2)=s2x2i.e(x,y)R(u,v)and(u,v)R(s,t)(x,y)R(s,t)i.etransitiveTherelationisanequivalancerelation.

Leave a Reply

Your email address will not be published. Required fields are marked *