Menu Close

A-sequence-of-numbers-T-1-T-2-T-3-T-n-satisfies-the-relation-T-n-1-n-2-nT-n-2-for-all-integers-n-1-if-T-1-2-find-a-The-values-of-T-2-T-3-T-4-b-An-expression-f




Question Number 10487 by Saham last updated on 13/Feb/17
A sequence of numbers T_1 ,T_2 ,T_3 ,....... T_(n ) satisfies  the relation T_(n + 1)  + n^2  = nT_n  + 2 for all integers  n≥1. if T_1  = 2. find   (a) The values of T_2 , T_3 , T_4   (b) An expression for T_n  in terms of the sequence  (c) The sum of the first nth terms of the sequence  (d) The sum of T_n  + T_(n + 1)  + T_(n + 2)   when n = 20
AsequenceofnumbersT1,T2,T3,.TnsatisfiestherelationTn+1+n2=nTn+2forallintegersn1.ifT1=2.find(a)ThevaluesofT2,T3,T4(b)AnexpressionforTnintermsofthesequence(c)Thesumofthefirstnthtermsofthesequence(d)ThesumofTn+Tn+1+Tn+2whenn=20
Answered by mrW1 last updated on 17/Feb/17
 T_(n + 1)   = nT_n  + 2−n^2   (a)  T_1 =2  T_2 =1×T_1 +2−1^2 =2+2−1=3  T_3 =2×T_2 +2−2^2 =6+2−4=4  T_4 =3×T_3 +2−3^2 =12+2−9=5  (b)  T_n =n+1  (c)  S(n)=Σ_(k=1) ^n T_k =2+3+4+...+(n+1)=((n(n+1))/2)  (d)  T_(20) +T_(21) +T_(22) =21+22+23=66
Tn+1=nTn+2n2(a)T1=2T2=1×T1+212=2+21=3T3=2×T2+222=6+24=4T4=3×T3+232=12+29=5(b)Tn=n+1(c)S(n)=nk=1Tk=2+3+4++(n+1)=n(n+1)2(d)T20+T21+T22=21+22+23=66
Commented by Saham last updated on 18/Feb/17
I really appreciate sir.
Ireallyappreciatesir.

Leave a Reply

Your email address will not be published. Required fields are marked *