Menu Close

A-square-whose-area-is-s-2-contains-a-semicircle-of-possible-largest-area-Determine-radius-of-the-semicircle-




Question Number 3836 by Rasheed Soomro last updated on 22/Dec/15
A square,whose area is s^2 ,contains   a semicircle of possible largest area.  Determine radius of the semicircle.
$${A}\:{square},{whose}\:{area}\:{is}\:{s}^{\mathrm{2}} ,{contains}\: \\ $$$${a}\:{semicircle}\:{of}\:{possible}\:{largest}\:{area}. \\ $$$${Determine}\:{radius}\:{of}\:{the}\:{semicircle}. \\ $$
Commented by Yozzii last updated on 24/Dec/15
r=(s/2). I think that in order to   obtain a semi−circle of largest area  in a square, it is necessary that its  straight edge is parallel to one of the  sides of the square. If any larger side length  is sought after, part of the semicircle  lies outside the square. In other words,  if the arm representing the side edge of the semicircle is  free to rotate θ° within the region of the  square about one of the corners of the  square (θ=angle between arm and side of square), only when θ=0° can we   completely contain a semi−circle in   the fixed square. So s=2r⇒r=(s/2).
$${r}=\frac{{s}}{\mathrm{2}}.\:{I}\:{think}\:{that}\:{in}\:{order}\:{to}\: \\ $$$${obtain}\:{a}\:{semi}−{circle}\:{of}\:{largest}\:{area} \\ $$$${in}\:{a}\:{square},\:{it}\:{is}\:{necessary}\:{that}\:{its} \\ $$$${straight}\:{edge}\:{is}\:{parallel}\:{to}\:{one}\:{of}\:{the} \\ $$$${sides}\:{of}\:{the}\:{square}.\:{If}\:{any}\:{larger}\:{side}\:{length} \\ $$$${is}\:{sought}\:{after},\:{part}\:{of}\:{the}\:{semicircle} \\ $$$${lies}\:{outside}\:{the}\:{square}.\:{In}\:{other}\:{words}, \\ $$$${if}\:{the}\:{arm}\:{representing}\:{the}\:{side}\:{edge}\:{of}\:{the}\:{semicircle}\:{is} \\ $$$${free}\:{to}\:{rotate}\:\theta°\:{within}\:{the}\:{region}\:{of}\:{the} \\ $$$${square}\:{about}\:{one}\:{of}\:{the}\:{corners}\:{of}\:{the} \\ $$$${square}\:\left(\theta={angle}\:{between}\:{arm}\:{and}\:{side}\:{of}\:{square}\right),\:{only}\:{when}\:\theta=\mathrm{0}°\:{can}\:{we}\: \\ $$$${completely}\:{contain}\:{a}\:{semi}−{circle}\:{in}\: \\ $$$${the}\:{fixed}\:{square}.\:{So}\:{s}=\mathrm{2}{r}\Rightarrow{r}=\frac{{s}}{\mathrm{2}}. \\ $$
Commented by RasheedSindhi last updated on 24/Dec/15
Straight edge of semicircle is parallel to one  of the diagonals of the square and  it touches all the sides  of square.
$${Straight}\:{edge}\:{of}\:{semicircle}\:{is}\:{parallel}\:{to}\:{one} \\ $$$${of}\:{the}\:{diagonals}\:{of}\:{the}\:{square}\:{and} \\ $$$${it}\:{touches}\:{all}\:{the}\:{sides}\:\:{of}\:{square}. \\ $$
Commented by RasheedSindhi last updated on 24/Dec/15
Drawing a semicircle ( by ruler  and compass) in a square that  touches all the sides of the  square is a familiar construction  problem.
$${Drawing}\:{a}\:{semicircle}\:\left(\:{by}\:{ruler}\right. \\ $$$$\left.{and}\:{compass}\right)\:{in}\:{a}\:{square}\:{that} \\ $$$${touches}\:{all}\:{the}\:{sides}\:{of}\:{the} \\ $$$${square}\:{is}\:{a}\:{familiar}\:{construction} \\ $$$${problem}. \\ $$
Commented by Yozzii last updated on 24/Dec/15
Hmm. Ok.
$${Hmm}.\:{Ok}.\: \\ $$
Commented by Rasheed Soomro last updated on 29/Dec/15

Leave a Reply

Your email address will not be published. Required fields are marked *