Menu Close

A-student-did-not-notice-that-the-multiplication-sign-between-two-7-digits-numbers-amd-wrote-one-14-digits-number-which-turned-out-to-be-3-times-the-would-be-product-What-are-the-initial-numbers-




Question Number 142920 by PRITHWISH SEN 2 last updated on 07/Jun/21
A student did not notice that the multiplication  sign between two 7−digits numbers amd wrote  one 14−digits number which turned out to be  3 times the would be product. What are the initial  numbers ?
Astudentdidnotnoticethatthemultiplicationsignbetweentwo7digitsnumbersamdwroteone14digitsnumberwhichturnedouttobe3timesthewouldbeproduct.Whataretheinitialnumbers?
Commented by PRITHWISH SEN 2 last updated on 07/Jun/21
thank you sir
thankyousir
Commented by mr W last updated on 07/Jun/21
only one solution:  1 666 667×3 333 334=((16 666 673 333 334)/3)
onlyonesolution:1666667×3333334=166666733333343
Answered by mr W last updated on 07/Jun/21
say the 7 digit numbers are a and b.  the 14 digit number is then  ab_(−) =a×10^7 +b  3×a×b=a×10^7 +b  b(3a−1)=a×10^7   3a−1=((10^7 )/k)=3a−1≥3×1000000−1 ⇒k≤3  3a−1=((10^7 )/k)=3a−1≤3×9999999−1 ⇒k≥1  with k=1:  3a−1=((10^7 )/1) ⇒a∉N  with k=2:  3a−1=((10^7 )/2) ⇒a=1 666 667 ✓  ⇒b=ka=3 333 334    only solution is:  1666667×3333334=16666673333334/3
saythe7digitnumbersareaandb.the14digitnumberisthenab=a×107+b3×a×b=a×107+bb(3a1)=a×1073a1=107k=3a13×10000001k33a1=107k=3a13×99999991k1withk=1:3a1=1071aNwithk=2:3a1=1072a=1666667b=ka=3333334onlysolutionis:1666667×3333334=16666673333334/3

Leave a Reply

Your email address will not be published. Required fields are marked *