Menu Close

A-telephone-wire-hangs-from-two-points-P-Q-60m-apart-P-Q-are-on-the-same-level-the-mid-point-of-the-telephone-wire-is-3m-below-the-level-of-P-Q-Assuming-that-it-hangs-in-form-of-a-curve-




Question Number 6169 by sanusihammed last updated on 17/Jun/16
A telephone wire hangs from two points P, Q  60m apart  P, Q  are on the same level . the mid point of the telephone  wire is  3m  below the level of P, Q. Assuming that it hangs in   form of a curve ,  find it equation.    please help. thanks for your time.
AtelephonewirehangsfromtwopointsP,Q60mapartP,Qareonthesamelevel.themidpointofthetelephonewireis3mbelowthelevelofP,Q.Assumingthatithangsinformofacurve,finditequation.pleasehelp.thanksforyourtime.
Answered by Yozzii last updated on 17/Jun/16
Let curve be quadratic where 0≤x≤60  f(x)=ax^2 +bx , a>0, P(0,0), Q(60,0) (P & Q lie on x−axis)  ⇒f(60)=0 or 3600a+60b=0  b=−60a........(i)  At x=0.5∣PQ∣=30, f′(30)=0 if  we assume a uniform wire lies between  P & Q.  ∴ 2a(30)+b=0 ⇒b=−60a (no new information based on quadratic assumption.)  ∴ At x=30,f(30)=−3.  ∴900a+30b=−3  300a+10b=−1..........(ii)  From (i), in (ii) 300a+10(−60a)=−1  −300a=−1⇒a=(1/(300))⇒b=((−60)/(300))=((−1)/5).  ∴ f(x)=(1/(300))x^2 −(1/5)x  (0≤x≤60)  −−−−−−−−−−−−−−−−−−−−−−−−  In general, in x−y Cartesian co−ordinates,  we can let P(a,b) and Q(a+60,b) where  a,b∈R.   This means that one can choose any arbitrary  place in the x−y plane to put this curve  for x∈[a,a+60].  Assuming the wire is uniform, the  example above indicates that the  quadratic curve is a suitable model.  Let f(x)=cx^2 +dx  (c>0).  At x=a, f(x)=b ∴ b=ca^2 +da  or d=((b−ca^2 )/a)   (a≠0).......(i)  At x=a+60, f(a+60)=b  ∴ c(a+60)^2 +d(a+60)=b  ca^2 +c(120a+3600)+da+60d=b  120c(a+30)+60d=0  2c(a+30)+d=0  2ca+60c+(b/a)−ca=0   (from  (i))  ca+60c=((−b)/a)  c=((−b)/(a(a+60)))  ⇒d=(b/a)−a×((−b)/(a(a+60)))  d=(b/a)(1+(a/(a+60)))=((b(a+60+a))/(a(a+60)))  d=((2b(a+30))/(a(a+60)))  Since c>0⇒ −60<a<0 & b>0 or b<0 & a>0 or b<0 & a<−60.  ∴ f(x)=((bx)/(a(a+60)))(−x+2a+60)  At x=a+30,  f(a+30)=((b(a+30)(−a−30+2a+60))/(a(a+60)))  f(a+30)=((b(a+30)^2 )/(a(a+60)))  f(a+30)−b=((900b)/(a(a+60)))  But f(a+30)−f(a)=−3.  ⇒300b=−a(a+60)  b=((−a(a+60))/(300)).  ∴ f(x)=((−a(a+60))/(300))×(x/(a(a+60)))(−x+2a+60)  f(x)=((x(x−2a−60))/(300))=(1/(300))x^2 −((x(a+30))/(150))  f(a)=((a(a−2a−60))/(300))=((−a(a+60))/(300))  f(a+60)=(((a+60)(−a))/(300))=b  f′(x)=((x−a−30)/(150))⇒at midpoint, f′(x)=0  or x=a+30.  We may choose to shift this curve  by an amount h vertically so that in  general  f(x)=(1/(300))x^2 −((x(a+30))/(150))+h  (a≤x≤a+60, a,h∈R).  a=0 and h=0⇒f(x)=(1/(300))x^2 −(1/5)x as was found.
Letcurvebequadraticwhere0x60f(x)=ax2+bx,a>0,P(0,0),Q(60,0)(P&Qlieonxaxis)f(60)=0or3600a+60b=0b=60a..(i)Atx=0.5PQ∣=30,f(30)=0ifweassumeauniformwireliesbetweenP&Q.2a(30)+b=0b=60a(nonewinformationbasedonquadraticassumption.)Atx=30,f(30)=3.900a+30b=3300a+10b=1.(ii)From(i),in(ii)300a+10(60a)=1300a=1a=1300b=60300=15.f(x)=1300x215x(0x60)Ingeneral,inxyCartesiancoordinates,wecanletP(a,b)andQ(a+60,b)wherea,bR.Thismeansthatonecanchooseanyarbitraryplaceinthexyplanetoputthiscurveforx[a,a+60].Assumingthewireisuniform,theexampleaboveindicatesthatthequadraticcurveisasuitablemodel.Letf(x)=cx2+dx(c>0).Atx=a,f(x)=bb=ca2+daord=bca2a(a0).(i)Atx=a+60,f(a+60)=bc(a+60)2+d(a+60)=bca2+c(120a+3600)+da+60d=b120c(a+30)+60d=02c(a+30)+d=02ca+60c+baca=0(from(i))ca+60c=bac=ba(a+60)d=baa×ba(a+60)d=ba(1+aa+60)=b(a+60+a)a(a+60)d=2b(a+30)a(a+60)Sincec>060<a<0&b>0orb<0&a>0orb<0&a<60.f(x)=bxa(a+60)(x+2a+60)Atx=a+30,f(a+30)=b(a+30)(a30+2a+60)a(a+60)f(a+30)=b(a+30)2a(a+60)f(a+30)b=900ba(a+60)Butf(a+30)f(a)=3.300b=a(a+60)b=a(a+60)300.f(x)=a(a+60)300×xa(a+60)(x+2a+60)f(x)=x(x2a60)300=1300x2x(a+30)150f(a)=a(a2a60)300=a(a+60)300f(a+60)=(a+60)(a)300=bf(x)=xa30150atmidpoint,f(x)=0orx=a+30.Wemaychoosetoshiftthiscurvebyanamounthverticallysothatingeneralf(x)=1300x2x(a+30)150+h(axa+60,a,hR).a=0andh=0f(x)=1300x215xaswasfound.
Commented by sanusihammed last updated on 17/Jun/16
Thanks so much
Thankssomuch

Leave a Reply

Your email address will not be published. Required fields are marked *