Question Number 6169 by sanusihammed last updated on 17/Jun/16
$${A}\:{telephone}\:{wire}\:{hangs}\:{from}\:{two}\:{points}\:{P},\:{Q}\:\:\mathrm{60}{m}\:{apart} \\ $$$${P},\:{Q}\:\:{are}\:{on}\:{the}\:{same}\:{level}\:.\:{the}\:{mid}\:{point}\:{of}\:{the}\:{telephone} \\ $$$${wire}\:{is}\:\:\mathrm{3}{m}\:\:{below}\:{the}\:{level}\:{of}\:{P},\:{Q}.\:{Assuming}\:{that}\:{it}\:{hangs}\:{in}\: \\ $$$${form}\:{of}\:{a}\:{curve}\:,\:\:{find}\:{it}\:{equation}. \\ $$$$ \\ $$$${please}\:{help}.\:{thanks}\:{for}\:{your}\:{time}. \\ $$
Answered by Yozzii last updated on 17/Jun/16
$${Let}\:{curve}\:{be}\:{quadratic}\:{where}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{60} \\ $$$${f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}\:,\:{a}>\mathrm{0},\:{P}\left(\mathrm{0},\mathrm{0}\right),\:{Q}\left(\mathrm{60},\mathrm{0}\right)\:\left({P}\:\&\:{Q}\:{lie}\:{on}\:{x}−{axis}\right) \\ $$$$\Rightarrow{f}\left(\mathrm{60}\right)=\mathrm{0}\:{or}\:\mathrm{3600}{a}+\mathrm{60}{b}=\mathrm{0} \\ $$$${b}=−\mathrm{60}{a}……..\left({i}\right) \\ $$$${At}\:{x}=\mathrm{0}.\mathrm{5}\mid{PQ}\mid=\mathrm{30},\:{f}'\left(\mathrm{30}\right)=\mathrm{0}\:{if} \\ $$$${we}\:{assume}\:{a}\:{uniform}\:{wire}\:{lies}\:{between} \\ $$$${P}\:\&\:{Q}. \\ $$$$\therefore\:\mathrm{2}{a}\left(\mathrm{30}\right)+{b}=\mathrm{0}\:\Rightarrow{b}=−\mathrm{60}{a}\:\left({no}\:{new}\:{information}\:{based}\:{on}\:{quadratic}\:{assumption}.\right) \\ $$$$\therefore\:{At}\:{x}=\mathrm{30},{f}\left(\mathrm{30}\right)=−\mathrm{3}. \\ $$$$\therefore\mathrm{900}{a}+\mathrm{30}{b}=−\mathrm{3} \\ $$$$\mathrm{300}{a}+\mathrm{10}{b}=−\mathrm{1}……….\left({ii}\right) \\ $$$${From}\:\left({i}\right),\:{in}\:\left({ii}\right)\:\mathrm{300}{a}+\mathrm{10}\left(−\mathrm{60}{a}\right)=−\mathrm{1} \\ $$$$−\mathrm{300}{a}=−\mathrm{1}\Rightarrow{a}=\frac{\mathrm{1}}{\mathrm{300}}\Rightarrow{b}=\frac{−\mathrm{60}}{\mathrm{300}}=\frac{−\mathrm{1}}{\mathrm{5}}. \\ $$$$\therefore\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{300}}{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{5}}{x}\:\:\left(\mathrm{0}\leqslant{x}\leqslant\mathrm{60}\right) \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${In}\:{general},\:{in}\:{x}−{y}\:{Cartesian}\:{co}−{ordinates}, \\ $$$${we}\:{can}\:{let}\:{P}\left({a},{b}\right)\:{and}\:{Q}\left({a}+\mathrm{60},{b}\right)\:{where} \\ $$$${a},{b}\in\mathbb{R}.\: \\ $$$${This}\:{means}\:{that}\:{one}\:{can}\:{choose}\:{any}\:{arbitrary} \\ $$$${place}\:{in}\:{the}\:{x}−{y}\:{plane}\:{to}\:{put}\:{this}\:{curve} \\ $$$${for}\:{x}\in\left[{a},{a}+\mathrm{60}\right]. \\ $$$${Assuming}\:{the}\:{wire}\:{is}\:{uniform},\:{the} \\ $$$${example}\:{above}\:{indicates}\:{that}\:{the} \\ $$$${quadratic}\:{curve}\:{is}\:{a}\:{suitable}\:{model}. \\ $$$${Let}\:{f}\left({x}\right)={cx}^{\mathrm{2}} +{dx}\:\:\left({c}>\mathrm{0}\right). \\ $$$${At}\:{x}={a},\:{f}\left({x}\right)={b}\:\therefore\:{b}={ca}^{\mathrm{2}} +{da} \\ $$$${or}\:{d}=\frac{{b}−{ca}^{\mathrm{2}} }{{a}}\:\:\:\left({a}\neq\mathrm{0}\right)…….\left({i}\right) \\ $$$${At}\:{x}={a}+\mathrm{60},\:{f}\left({a}+\mathrm{60}\right)={b} \\ $$$$\therefore\:{c}\left({a}+\mathrm{60}\right)^{\mathrm{2}} +{d}\left({a}+\mathrm{60}\right)={b} \\ $$$${ca}^{\mathrm{2}} +{c}\left(\mathrm{120}{a}+\mathrm{3600}\right)+{da}+\mathrm{60}{d}={b} \\ $$$$\mathrm{120}{c}\left({a}+\mathrm{30}\right)+\mathrm{60}{d}=\mathrm{0} \\ $$$$\mathrm{2}{c}\left({a}+\mathrm{30}\right)+{d}=\mathrm{0} \\ $$$$\mathrm{2}{ca}+\mathrm{60}{c}+\frac{{b}}{{a}}−{ca}=\mathrm{0}\:\:\:\left({from}\:\:\left({i}\right)\right) \\ $$$${ca}+\mathrm{60}{c}=\frac{−{b}}{{a}} \\ $$$${c}=\frac{−{b}}{{a}\left({a}+\mathrm{60}\right)} \\ $$$$\Rightarrow{d}=\frac{{b}}{{a}}−{a}×\frac{−{b}}{{a}\left({a}+\mathrm{60}\right)} \\ $$$${d}=\frac{{b}}{{a}}\left(\mathrm{1}+\frac{{a}}{{a}+\mathrm{60}}\right)=\frac{{b}\left({a}+\mathrm{60}+{a}\right)}{{a}\left({a}+\mathrm{60}\right)} \\ $$$${d}=\frac{\mathrm{2}{b}\left({a}+\mathrm{30}\right)}{{a}\left({a}+\mathrm{60}\right)} \\ $$$${Since}\:{c}>\mathrm{0}\Rightarrow\:−\mathrm{60}<{a}<\mathrm{0}\:\&\:{b}>\mathrm{0}\:{or}\:{b}<\mathrm{0}\:\&\:{a}>\mathrm{0}\:{or}\:{b}<\mathrm{0}\:\&\:{a}<−\mathrm{60}. \\ $$$$\therefore\:{f}\left({x}\right)=\frac{{bx}}{{a}\left({a}+\mathrm{60}\right)}\left(−{x}+\mathrm{2}{a}+\mathrm{60}\right) \\ $$$${At}\:{x}={a}+\mathrm{30}, \\ $$$${f}\left({a}+\mathrm{30}\right)=\frac{{b}\left({a}+\mathrm{30}\right)\left(−{a}−\mathrm{30}+\mathrm{2}{a}+\mathrm{60}\right)}{{a}\left({a}+\mathrm{60}\right)} \\ $$$${f}\left({a}+\mathrm{30}\right)=\frac{{b}\left({a}+\mathrm{30}\right)^{\mathrm{2}} }{{a}\left({a}+\mathrm{60}\right)} \\ $$$${f}\left({a}+\mathrm{30}\right)−{b}=\frac{\mathrm{900}{b}}{{a}\left({a}+\mathrm{60}\right)} \\ $$$${But}\:{f}\left({a}+\mathrm{30}\right)−{f}\left({a}\right)=−\mathrm{3}. \\ $$$$\Rightarrow\mathrm{300}{b}=−{a}\left({a}+\mathrm{60}\right) \\ $$$${b}=\frac{−{a}\left({a}+\mathrm{60}\right)}{\mathrm{300}}. \\ $$$$\therefore\:{f}\left({x}\right)=\frac{−{a}\left({a}+\mathrm{60}\right)}{\mathrm{300}}×\frac{{x}}{{a}\left({a}+\mathrm{60}\right)}\left(−{x}+\mathrm{2}{a}+\mathrm{60}\right) \\ $$$${f}\left({x}\right)=\frac{{x}\left({x}−\mathrm{2}{a}−\mathrm{60}\right)}{\mathrm{300}}=\frac{\mathrm{1}}{\mathrm{300}}{x}^{\mathrm{2}} −\frac{{x}\left({a}+\mathrm{30}\right)}{\mathrm{150}} \\ $$$${f}\left({a}\right)=\frac{{a}\left({a}−\mathrm{2}{a}−\mathrm{60}\right)}{\mathrm{300}}=\frac{−{a}\left({a}+\mathrm{60}\right)}{\mathrm{300}} \\ $$$${f}\left({a}+\mathrm{60}\right)=\frac{\left({a}+\mathrm{60}\right)\left(−{a}\right)}{\mathrm{300}}={b} \\ $$$${f}'\left({x}\right)=\frac{{x}−{a}−\mathrm{30}}{\mathrm{150}}\Rightarrow{at}\:{midpoint},\:{f}'\left({x}\right)=\mathrm{0} \\ $$$${or}\:{x}={a}+\mathrm{30}. \\ $$$${We}\:{may}\:{choose}\:{to}\:{shift}\:{this}\:{curve} \\ $$$${by}\:{an}\:{amount}\:{h}\:{vertically}\:{so}\:{that}\:{in} \\ $$$${general} \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{300}}{x}^{\mathrm{2}} −\frac{{x}\left({a}+\mathrm{30}\right)}{\mathrm{150}}+{h}\:\:\left({a}\leqslant{x}\leqslant{a}+\mathrm{60},\:{a},{h}\in\mathbb{R}\right). \\ $$$${a}=\mathrm{0}\:{and}\:{h}=\mathrm{0}\Rightarrow{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{300}}{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{5}}{x}\:{as}\:{was}\:{found}. \\ $$
Commented by sanusihammed last updated on 17/Jun/16
$${Thanks}\:{so}\:{much} \\ $$