Menu Close

A-town-N-is-340km-due-west-of-town-G-and-town-K-is-due-west-of-town-N-A-helicopter-Zebra-left-G-for-K-at-9a-m-Another-helicopter-Buffalo-left-N-for-K-at-11a-m-Helicopter-Buffalo-travelled-at-an




Question Number 66868 by John Kaloki Musau last updated on 20/Aug/19
A town N is 340km due west of   town G and town K is due west   of town N. A helicopter Zebra   left G for K at 9a.m. Another   helicopter Buffalo left N for K  at 11a.m. Helicopter Buffalo  travelled at an average speed of   20km/h faster than helicopter  Zebra. If both helicopters reached  K at 12.30p.m, find the speed of   helicopter Buffalo.
$${A}\:{town}\:{N}\:{is}\:\mathrm{340}{km}\:{due}\:{west}\:{of}\: \\ $$$${town}\:{G}\:{and}\:{town}\:{K}\:{is}\:{due}\:{west}\: \\ $$$${of}\:{town}\:{N}.\:{A}\:{helicopter}\:{Zebra}\: \\ $$$${left}\:{G}\:{for}\:{K}\:{at}\:\mathrm{9}{a}.{m}.\:{Another}\: \\ $$$${helicopter}\:{Buffalo}\:{left}\:{N}\:{for}\:{K} \\ $$$${at}\:\mathrm{11}{a}.{m}.\:{Helicopter}\:{Buffalo} \\ $$$${travelled}\:{at}\:{an}\:{average}\:{speed}\:{of}\: \\ $$$$\mathrm{20}{km}/{h}\:{faster}\:{than}\:{helicopter} \\ $$$${Zebra}.\:{If}\:{both}\:{helicopters}\:{reached} \\ $$$${K}\:{at}\:\mathrm{12}.\mathrm{30}{p}.{m},\:{find}\:{the}\:{speed}\:{of}\: \\ $$$${helicopter}\:{Buffalo}. \\ $$
Commented by John Kaloki Musau last updated on 20/Aug/19
The answer is 205km/h.  please do it.
$$\boldsymbol{{The}}\:\boldsymbol{{answer}}\:\boldsymbol{{is}}\:\mathrm{205}\boldsymbol{{km}}/\boldsymbol{{h}}. \\ $$$$\boldsymbol{{please}}\:\boldsymbol{{do}}\:\boldsymbol{{it}}. \\ $$
Commented by Prithwish sen last updated on 20/Aug/19
let the speed of zebra is u km╱hr  ∴ the speed of buffalo = (u+20) km╱hr  the distance between K and N is S km  S+340=((7u)/2) .......(i)  S = ((3(u+20))/2) .......(ii)  solving  u = 185 km╱hr  ∴ the speed of buffalo = (185+20)km╱hr  =205km╱hr
$$\mathrm{let}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{zebra}\:\mathrm{is}\:\boldsymbol{\mathrm{u}}\:\mathrm{km}\diagup\mathrm{hr} \\ $$$$\therefore\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{buffalo}\:=\:\left(\boldsymbol{\mathrm{u}}+\mathrm{20}\right)\:\mathrm{km}\diagup\mathrm{hr} \\ $$$$\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{K}\:\mathrm{and}\:\mathrm{N}\:\mathrm{is}\:\boldsymbol{\mathrm{S}}\:\mathrm{km} \\ $$$$\mathrm{S}+\mathrm{340}=\frac{\mathrm{7u}}{\mathrm{2}}\:…….\left(\mathrm{i}\right) \\ $$$$\mathrm{S}\:=\:\frac{\mathrm{3}\left(\mathrm{u}+\mathrm{20}\right)}{\mathrm{2}}\:…….\left(\mathrm{ii}\right) \\ $$$$\mathrm{solving}\:\:\boldsymbol{\mathrm{u}}\:=\:\mathrm{185}\:\mathrm{km}\diagup\mathrm{hr} \\ $$$$\therefore\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{buffalo}\:=\:\left(\mathrm{185}+\mathrm{20}\right)\mathrm{km}\diagup\mathrm{hr} \\ $$$$=\mathrm{205km}\diagup\mathrm{hr} \\ $$
Commented by John Kaloki Musau last updated on 20/Aug/19
I am very grateful
$${I}\:{am}\:{very}\:{grateful} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *