Menu Close

A-triangle-ABC-is-inscribed-in-a-circle-AC-10cm-BC-7cm-and-AB-10cm-Find-the-radius-of-the-circle-




Question Number 72734 by Mr Jor last updated on 01/Nov/19
A triangle ABC is inscribed in a  circle.AC=10cm,BC=7cm and   AB=10cm.Find the radius of the  circle.
AtriangleABCisinscribedinacircle.AC=10cm,BC=7cmandAB=10cm.Findtheradiusofthecircle.
Answered by $@ty@m123 last updated on 01/Nov/19
a=7, b=10, c=10  s=((a+b+c)/2) =((27)/2)  △=(√(s(s−a)(s−b)(s−c)))      =(√(((27)/2)(((27)/2)−7)(((27)/2)−10)(((27)/2)−10)))       =(√(((27)/2)×((13)/2)×(7/2)×(7/2)))        =((21)/4)(√(39))   ......(1)  R=((abc)/(4△))      =((7×10×10)/(4×((21(√(39)))/4)))       =((100)/(3(√(39))))  Ans.
a=7,b=10,c=10s=a+b+c2=272=s(sa)(sb)(sc)=272(2727)(27210)(27210)=272×132×72×72=21439(1)R=abc4=7×10×104×21394=100339Ans.
Answered by MJS last updated on 01/Nov/19
triangle with side lengths a, b, c  circumcircle R=((abc)/δ)  δ=(√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))
trianglewithsidelengthsa,b,ccircumcircleR=abcδδ=(a+b+c)(a+b+c)(ab+c)(a+bc)
Commented by $@ty@m123 last updated on 01/Nov/19
a+b+c=2s  ∴δ=(√(2s.(2s−2a)(2s−2b)(2s−2c)))        =4(√(s(s−a)(s−b)(s−c)))       =4△
a+b+c=2sδ=2s.(2s2a)(2s2b)(2s2c)=4s(sa)(sb)(sc)=4
Answered by mr W last updated on 01/Nov/19
(√(10^2 −((7/2))^2 ))−R=(√(R^2 −((7/2))^2 ))  10^2 −2R(√(10^2 −((7/2))^2 ))=0  ⇒R=((10^2 )/( (√((2×10)^2 −7^2 ))))=((100)/( (√(27×13))))=((100(√(39)))/(117))≈5.338
102(72)2R=R2(72)21022R102(72)2=0R=102(2×10)272=10027×13=100391175.338
Commented by mr W last updated on 01/Nov/19

Leave a Reply

Your email address will not be published. Required fields are marked *